Waiting for the comet: Slash piles are dinosaurs

Debbie Page-Dumroese Senior Research Soil Scientist debbie.dumroese@usda.gov Kas Dumroese Senior Research Plant Physiologist kas.dumroese@usda.gov

USDA Forest Service Rocky Mountain Research Station Moscow, ID

FOREST SERVICE

6th PNW forest vegetation management conference Dec 6-7, 2022

Overview

- Slash pile review
- Alternatives
- Ecosystem benefits

Current slash pile use and impacts

Why pile and burn slash?

- Effective tool to meet management objectives
- Reduce fuel loads
- Seed bed preparation
- Fast and efficient
- Weather conditions
- Economically feasible

Mott et al. 2021. Post-harvest slash burning in coniferous forests in North America: A review of ecological impacts. For Ecol & Manag. 493, 119251

Forest management

- 18-25% of aboveground harvested material is in
 - Tops
 - Branches
 - Foliage
 - 60% of this material gets piled
- Salvage logging of drought, disease, insect and wildfire killed trees
- Thinning operations

'Typical' burning slash pile emissions 2.5 m high x 5 m diameter piles

Pollutant	Wet pile	Dry (uncovered) pile	Dry covered
	g/kg biomass consumed		
Carbon dioxide	1869	1785	1795
Carbon monoxide	82	29	46
Methane	5.7	1.1	2.0
PM _{2.5}	18	4.5	3.4

- Wet piles take longer to burn
- PM_{2.5} continue to be produced up to 4 days after ignition

Aurell et al. 2017. Atmospheric Environment 150: 395-406

Hand piles

- ~1-5 tons of wood
- Release 1-9 tons of CO₂
- Generally, few soil impacts

Machine piles

- Vary in size and density
- ~10-60 tons of wood
- Burning often exceeds EPA guidelines for
 - PM_{2.5}
 - CO₂
- Affects a large air-shed

Leaving piles unburned

- Reduce soil temperature
- Pulse of nutrients in one place
- Temperature + Inutrients = change in microbial processes
- Home for small mammals
- Little vegetation

Prescribed pile burning

- Mitigating wildfire risk
- Increased biomass from forest health restoration treatments
- Slash disposal
- Environmental burden reduced air quality

Soil impacts from pile burning

- Heat transfers directly to soil
- Heat penetrates up to 1.3 m (4')
- Generate temperatures that kill most soil biota
- Elevated temperatures can persist for 18 months at depth

Mott et al. 2021. Post-harvest slash burning in coniferous forests in North America: A review of ecological impacts. For Ecol & Manag. 493, 119251

Soil temperature	Ecological impact
Degrees C (F)	
50 (122)	Some microbial death
60 (140)	Lethal to seeds, roots, plant tissue
120-160 (248-320)	Lethal to all living organisms
500 (932)	Irreversible soil physical, chemical, biological, and hydrological changes
>1000 (1836)	Maximum reported soil temperature at 10 cm (4") depth

Additional soil impacts from pile burning

- Burn scars can last for >5 decades
- Loss of nutrients
- Loss of productivity
- Increase in invasive species

Other slash pile impacts

- Diminish understory richness
- Kills plants with shallow rhizomes
- Destroys seed bank
 - Usually non-native (invasive) species are viable
- Lodgepole pine benefits from high fire severity
 - Serotinous cones
 - Less competition
- Other tree species
 - High severity is detrimental
 - Low severity is beneficial

Burn Scar Rehabilitation

Stabilize soils through:

- Residue additions
 - often no better than doing nothing
- Mulching
 - suppresses native plant cover & available N
- Mastication
 - alter seed bank and germination

Rhoades et al. 2017. Scientifica 2017 p. 1-10

Slash pile alternatives

Making a change with biochar

How to:

- Make it
- Use it
- Benefits

Make biochar on site: slash piles

- Forest biochar can be made onsite and used as a soil amendment
- Heat is dissipated away from the soil
- Char increased soil cover and water holding capacity
- Partnered with National Forests

Make biochar on-site: Kilns

- Home-made kilns (retired FS employee)
- Box Kilns: Developed by Darren McAvoy (Utah State University)
- Ring of Fire Kilns: Developed by Kelpie Wilson (Wilson Biochar)

Make biochar on-site: Air curtain burner (retooled)

 Patented technology: Move biochar to the bottom of the burner Quench the biochar • Field testing in progress Cooperative work with Air Burner, Inc., U.S. Biochar Initiative, and **U.S.** Forest Service Check out this video at: https://www.youtube.com/watch?v =lqiQPYhbmXk

Making biochar on-site: Mobile pyrolyzers (Carbonator made by Tigercat)

Benefits of biochar

- No slash pile burning impacts!
- Used for:
 - Log landing/skid trail restoration
 - Increase soil water holding capacity & available water
 - Increase nutrient retention
 - Sequester C/mitigate climate change
 - Rehab abandoned mine lands
 - Increase rural community economies
 - Keep understory green longer
 - Reduce fuels
 - Employ conservation crews

How much biochar to add to forest sites?

- Our best results have occurred at 10 tons/acre
- Other rates (1-10 tons/acre) are possible
- Any rate will sequester C

It's all different

- Soil are different
- Biochars are different
- Different results from different soils
- There are some commonalities!
- Forest biomass for wildland soils

Links between biochar and plants

From: Biomass to Biochar: Maximizing the carbon value - <u>https://csanr.wsu.edu/biomass2biochar/</u>

Biochar and soil water: building a soil sponge and avoiding a dust bowl

Biochar increases plant available water:

- 38%: coarse-textured soil
- 19%: medium-textured soil
- 16%: fine-textured soil

Data from: Blanco-Canqui, 2017; Edeh et al., 2020; Razzaghi et al. 2020

Biochar and forest soil microbiome

- Increase in soil respiration
- Increase or decrease native OM decomposition
- Change in microbial biomass
- Change in enzyme production

Biochar and invasive species

- Weeds challenge restoration efforts
- Alter soil properties and processes
- Biochar can:
 - Be used by heterotrophic microbes
 - Alter CEC, pH, water, nutrients to limit invasive species
 - Increase biomass of native grasses
- Consider combining biochar with compost

Adams et al. 2013. The effect of biochar on native and invasive prairie plant species. Invasive Plant Science and Management 6: 197-207

Biochar and mine site restoration

- 1000's of abandoned mine sites
- Contaminated or non-contaminated
- Biochar can alter soil properties
- Increase vegetation cover
- Reduce wind/water erosion
- Bring non-productive soil into production

Rodriguez-Franco, C. and Page-Dumroese, D. 2020. Woody biochar potential for abandoned mine land restoration in the U.S.: A review. doi: 10.1007/s42773-020-00074-y

Summary of Forest Soil Changes

- Carbon sequestration
- Available water
- Greenhouse gas fluxes
- Soil biology
- Water erosion
- Wind erosion
- Nutrient leaching
- Vegetation productivity
- Invasive species

Why is biochar important?

- Wildfire risk reduction
- Rapid increase in soil C
- Climate mitigation
- Ecosystem services
- Rural economies

Biochar is: Safe, shovel-ready, scalable

The real reason dinosaurs became extinct

Thank you for your time

Debbie Page-Dumroese debbie.dumroese@usda.gov

Kas Dumroese kasten.dumroese@usda.gov

