Seedling Carbon and Water Balances: Do They Limit Cold Storage Duration?

Rebecca Sheridan

Nursery Scientist, Weyerhaeuser

(previously: Postdoctoral Research Scholar, Oregon State University)

Lloyd Nackley, Oregon State University

Outline

- Operational needs for cold storage
- Challenges for plants in cold storage (or winter)
 - Water relations: desiccation and hydraulic failure
 - Winter energy supply: carbon starvation
- Experiment: do we see plants hit biological limits in extended cold storage?
- Biologically-informed cold storage decisions in nursery systems

Cold Storage Basics

- Temperature- and humidity-controlled environment to bridge the gap between the end of the nursery growth cycle and outplanting
 - Generally, cooler storage is 1 to 2°C and freezer storage is -2 to -1°C
- For some plants, provides chilling hours required to move through dormancy
- Allows lifting, handling, shipping, and outplanting to happen while plants are dormant
 - Matching nursery production cycles to environmental cycles is could become more unpredictable in the face of climate change

Limits to Cold Storage: Research Questions

- Plants cannot be kept in cold storage indefinitely: what fails first?
 - Water relations or non-structural carbohydrate supply?

#whatkillstrees

Limits to Cold Storage: Water Relations

- Plants need water through the winter to maintain tissues and resume growth
- Water relations could be disrupted in cold storage by :
 - Tissue desiccation
 - Xylem failure
 - Root desiccation or lack of water supply
 - Freeze-thaw cycles that damage xylem

Limits to Cold Storage: Non-Structural Carbohydrates (NSC)

- Non-structural carbohydrates are the sugars and starch that plants use for energy storage, osmotic adjustment to avoid freeze damage, and other physiological processes
- Carbon starvation during cold storage could occur because:
 - Respiration
 - Loss of tissue with NSC reserves (e.g. through root pruning)
 - Changes in dormancy status
 - Attempts at growth while still in dark conditions

Limits to Cold Storage: Research Questions

- Plants cannot be kept in cold storage indefinitely: what fails first?
 - Water relations or non-structural carbohydrate supply?
- Are there negative effects on outplanting performance, short of mortality?
- Can we estimate how long trees could be kept in cold storage before there are negative effects to outplanting performance?

#whatkillstrees

Approach: Plant Material

Species	Cultivar Name	Stocktype
Acer rubrum 'Franksred'	Red Sunset® maple	4-foot whips; 4- and 5-foot branched saplings
Amelanchier x. grandiflora	Autumn Brilliance® serviceberry	3- and 4-foot whips
Gleditsia triacanthos 'Skycole'	Skyline® honeylocust	3- and 4-foot whips
Gymnocladus dioicus	Kentucky coffeetree	4-foot whips
Malus 'Prairifire'	Prairie fire crabapple	5-foot whips on hardy rootstock
Quercus rubra	Red oak	4-foot whips

- Lifted from bareroot beds in Fall 2019
- Held in cold storage at 1-2°C with roots in paper mulch
- Removed from cold storage, measured, and planted in irrigated and weeded field over 14 weeks* beginning March 19th, 2020

Approach: Measurements

Measured once on subsample:

Stem segment:

Hydraulic Conductance and Vulnerability to Embolism

Approach: Water Relations

Identifying thresholds to water stress using vulnerability curves

Results: Water Relations

Trends in stem water potential over the spring planting window

Results: Non-Structural Carbohydrates

No trends in stem NSC concentrations over spring outplanting window

Water Relations: A Tale of Two Xylem Anatomies

 Why can some cultivars crossing hydraulic thresholds in cold storage without diminished outplanting performance?

Take-aways:

- Plants are still vulnerable to stresses during winter or cold storage
 - Water is needed for physiological processes, growth, and to mobilize NSC reserves
 - NSC reserves are needed for growth, freeze protection, and water stress tolerance
 - Water relations and carbon dynamics are linked for outplanting success
- Understanding physiological mechanisms helps us predict and screen for plant responses to stress

Take-aways

- Appropriate operational cold storage conditions can maintain plant quality
- Even though we did not see detrimental effects for the trees in this experiment, we still recommend monitoring temperature, humidity, and seedling metrics through time in cold storage
- Extending time in cold storage will also have effects on phenology that could impact outplanting performance

Acknowledgements

- Co-author:
 - Lloyd Nackley
- Research Assistance:
 - Brian Hill,
 - Dean and Louis Nackley,
 - Owen and Luke van Lehman,
 - Hannah Velasquez, and
 - John Sheridan
- Plant Material:
 - Hans Nelson & Sons Nursery and Bailey Nurseries for providing plant material.
 - J. Frank Schmidt and Son Co. for donating plant material and providing cooler space to store trees
- Funding:
 - Provided in part by the Oregon Association of Nurseries and the Oregon Department of Agriculture nursery research program grant no. K11920

Approach: Water Relations

Results: Water Relations

