A South Carolina Lidar Forest Modeling Analysis

4/7/2021, OLI Meeting Jacob Strunk, Bob McGaughey USFS VMaRS Team

Study Site

- Savannah River Site in South Carolina
- Department of Energy facility but non-facility lands are managed by the Forest Service
- Total area is ~200,000 acres with ~170,000 acres of forested land
- Lands managed for wood products and habitat for various species
- Some areas are restricted or require special precautions for entry
- Earlier lidar project in 2009-2010

3 Project Objectives

1. Build operational inventory

2. Research Investigation

4 Sample Design

- 548 Plot Fixed Radius Plots
- 50 Validation Stands
- Lidar (leaf off)

USDA Forest Service -- Pacific Northwest Research Station – Resource Monitoring and Assessment Program -- Vegetation Monitoring and Assessment

50 Validation-stands (9 x 0.1 acre plots)

Validation-stand (5 acres)

USDA Forest Service -- Pacific Northwest Research Station - Resource Monitoring and Assessment Program -- Vegetation Monitoring and Assessment Team

Hardwood Index

Mixed hardwood/conifer

Random Forest (RF) model on homogeneous plots (2m) -height and intensity metrics

7 Operational Products

- Raster layers
- Vector layer (many attributes)
- Site-wide Tree List
- FPS Database (<u>https://fbrinstitute.org/</u>)
 - Evaluate management alternatives
 - Demonstrate sustainable yield

Raster Products

vector layers

iii 🔹 🗄												
Joiume	ACDES	VEAD		he he l	he hu	he en l	welling I	well have I	wet en d	hhm ha lán	hhm huu l tu	hhus as
_	ACRES	TEAK_	STAND_A					VOI_NW_I_	VOI_SW_I	dt_i_sn_maa	q <u>1_1_wn_maa</u>	/2_maa
_	/2.85	1990	29	62.63	6.64	56	1836.78	136.68	1700.1	28.8	2.47	
_	8.19	1990	29	64.76	23.06	41.7	1/40./8	523.39	1217.39	28.33	9.18	
	20.71	1990	29	70.26	22.84	47.42	1985.12	542.62	1442.5	31.69	9.26	
	6.54	1990	29	67.04	7.32	59.71	1806.08	137.89	1668.19	28.61	2.59	
	21	1990	29	77.64	7.91	69.73	1930.03	135.24	1794.79	30.9	2.69	
	53.33	1990	29	110.8	31.95	78.85	2756.63	706.07	2050.55	45.01	12.9	
	47.9	1990	29	79.31	20.84	58.47	2148.69	421.64	1727.05	34.65	7.87	
	47.26	1990	29	104.32	32.61	71.7	2946.42	737.55	2208.87	47.74	13.27	
	39.02	1990	29	126.33	12.07	114.27	3512.01	238.78	3273.23	55.82	4.51	
	21.92	1990	29	88.62	24.11	64.52	2094.54	475.93	1618.6	34.43	8.98	
	50.29	1990	29	83.58	9.97	73.61	2166.38	188.65	1977.73	34.52	3.57	
	0.09	1990	29	66.1	13.3	52.8	1302.9	211.2	1091.7	21.6	3.9	
	13.22	1990	29	102.7	5.26	97.43	2605.87	79.28	2526.58	41.34	1.62	
	40.75	1990	29	107.19	11.18	96	2792.31	209.03	2583.28	44.43	3.98	
	19.1	1990	29	118.74	14.8	103.95	3392.5	307.43	3085.08	54.02	5.79	
	17.27	1990	29	72.78	49.06	23.71	1656.29	1111.36	544.94	27.32	18.73	
	47.46	1990	29	55.55	10.19	45.36	1513.79	211.85	1301.95	24.26	3.82	
	1.52	1990	29	86.54	60.27	26.29	2017.97	1304.27	713.71	34	22.93	
	33	1990	29	97.62	16.33	81.29	2453.84	318.27	2135.58	39.44	5.88	
	1.62	1990	29	44.14	14.44	29.71	1003.73	260.23	743.49	17.01	4.81	
	13.36	1990	29	76.77	10.38	66.4	1861.01	164.16	1696.86	29.92	3.34	
	46.9	1990	29	135.01	9.04	125.97	3916.96	174.62	3742.34	61.99	3.3	
	3 39	1990	29	116.83	104 76	12 08	2895 59	2599.28	296.31	44 72	40.18	
-	20.9	1990	29	81.05	59.3	21.75	2099.69	1474.41	625.28	35.07	25 19	
	61.38	1990	29	138.38	20.76	117.63	4009.68	470.05	3539.63	63.97	8.58	
-	3.98	1990	20	124.82	91.08	33 72	3694 51	2564 67	1129.84	60.02	42.52	
_	57.05	1990	20	140 33	11 62	128 71	4037.48	251.84	3785.63	64.08	4 63	
<	57.05	1350	29	140.55	11.02	120.71	4037.40	231.04	5765.05	04.00	4.03	

0 ▶ ▶ | 🔲 📟 | (0 out of 8746 Selected

Volume

Tree List (FPS Database)

USD

E Sterf		PLOTS - Forest Inventory 2017 7.5	3			Strunk, Jacob - FS 🛛 SJ		\times
File Home Create External Data Database Tools	Add-ins Help Fields Table						- 0	\times
View Paste	election - dvanced - Refresh	→ Go To → Find	Calibri	 11 ↓ = ±= Δ → ab/ → b → = = = 	- m == =			
▼ ▼ ▼ Format Painter 2 Remove Sort ▼ Tr	oggle Filter All - X Delete - More -	kੇ Select ▼ Fit Form Win	dows					
/iews Clipboard 🕞 Sort & Filter	Records	Find Window	,	Text Formatting	<u>ایا</u>			
All Access Objects		S - GRP - X_ARC - Y_DIST -	MSMT - DBH -	TREES - HEIGHT - HI_CO	DE - TAP_DIA -	TAP_HI - TAP_CODE -	AGE - AGE_C	.00
DWOOD 🔺			8.8	0.0 /6.0	0.0	0 0.0	0	
GISLINK	1 17 115		1.4	0.0 10.8	0.0	0 0.0	0	
HABDENS	1 17 215		20	0.0 29.7	0.0	0 0.0	0	
НАВІТАТ	1 17 2 15		2.2	0.0 28.9	0.0	0 0.0	0	
HABRINE	1 17 3 LS		10.9	0.0 87.0	0.0	0 0.0	0	
	1 17 415		2.8	0.0 28.9	0.0	0 0.0	0	
I RADSYM	1 17 4 On	0 0	20.1	0.0 103.0	0.0	0 0.0	0	
HARVEST	1 17 5 Ar	0 0	1.0	0.0 17.2	0.0	0 0.0	0	
HISTORY	1 17 5 Qn	0 0	18.6	0.0 115.0	0.0	0 0.0	0	
NESTAREA	1 17 6 Qn	0 0	26.5	0.0 113.0	0.0	0.0	0	
NESTSITE	1 17 6 Ar	0 0	2.9	0.0 33.6	0.0	0.0	0	
PLANCUT	1 17 7 Ar	0 0	2.7	0.0 32.2	0.0	0.0	0	
DIANDES	1 17 7 Ls	0 0	3.8	3 0.0 38.0	0.0	0.0	0	
PLANKES	1 17 8 Ls	0 0	4.0	0.0 40.0	0.0	0.0	0	
PLANSRT	1 17 9 Ls	0 0	19.3	0.0 118.0	0.0	0.0	0	
PLOGS	1 17 10 Td	0 0	16.8	3 0.0 115.0	0.0	0.0	0	
PLOTLIST	1 17 11 Qn	0 0	26.7	0.0 117.0	0.0	0.0	0	
PLOTS	1 17 12 Qn	0 0	18.2	0.0 105.0	0.0	0.0	0	
REF PLANT	1 17 13 f0	0 0	16.3	0.0 94.0	0.0	0.0	0	
	1 17 14 g0	0 0	22.1	0.0 108.0	0.0	0.0	0	
	1 17 15 Qn	0 0	13.2	2 0.0 86.0	0.0	0 0.0	0	
SCHEDULE	1 17 16 Ls	0 0	4.2	2 0.0 41.0	0.0	0 0.0	0	
SILVICS	1 17 17 f0	0 0	15.5	0.0 98.0	0.0	0 0.0	0	
SNAGS	1 17 18 XX	0 0	14.8	3 0.0 79.0	0.0	0 0.0	0	
SORTS	1 1/ 19 Qn	0 0	10.9	0.0 85.0	0.0	0 0.0	0	
SPECIES	1 17 20 LS	0 0	9.5	0.0 90.0	0.0	0 0.0	0	
STAND	1 1/ 21 LS		3.5	0.0 27.0	0.0	0 0.0	0	
STANDERT	1 17 22 NO		12.0	0.0 30.0	0.0	0 0.0	0	
	1 17 23 QN		12.0	0.0 113.0	0.0	0 0.0	0	
TITLES	1 17 24 10		10.3	0.0 78.0	0.0	0 0.0	0	
VEGCLS	1 17 25 10 1 17 26 Le		12.7	0.0 105.0	0.0	0 0.0	0	
YIELD	1 17 20 LS		15.5	0.0 113.0	0.0	0 0.0	0	
I YLDENS	1 17 28 Ar		6.7	0.0 60.0	0.0	0 0.0	0	
		er Search 4	017				-	F

Research Question

- Model Type (PS, OLS, kNN, RF)
- Stand vs Plot
- No. Predictors
- Spp groups (vol x hw, sw)
- DBH (vol x spp grp x 2-inch bins)
- Growth projection
- DBH prediction methods?
- Midstory inference

12 Findings

- R² proportion of variance explained
- Stand level
- Plot level
- Attributes
 - ba = basal area
 - bbm: biomass
 - cbh: crown base height
 - den: density, trees per acre
 - Ior: Lorey's height
 - qmd: quadratic mean diameter
 - t40: top 40, top 40 trees per acre
 - vol: board foot volume / acre

Stand level Inference

USDA Forest Service -- Pacific Northwest Research Station – Resource Monitoring and Assessment Program -- Vegetation Monitoring and Assessment Team

Model Type (RF and kNN best)

USDA Forest Service -- Pacific Northwest Research Station - Resource Monitoring and Assessment Program -- Vegetation Monitoring and Assessment Team

15 Example Visual Diagnostics (Biomass, SW)

Stand (solid) always better than Plot for same model type

USDA Forest Service -- Pacific Northwest Research Station - Resource Monitoring and Assessment Program -- Vegetation Monitoring and Assessment Team

No. Predictors

Few=Elev.P20,Elev.P95,Profile.area,HWProportion

Many=Elev.minimum,Elev.mean,Elev.stddev,Elev.skewness,Elev.L1,Elev.P05,Elev.P10,Elev.P20,Elev.P40,Elev.P50,Elev.P60,Elev.P70,Elev.P80,Elev.P90,Elev.P99,Canop y.relief.ratio,Percentage.first.returns.above.2.00,X.All.returns.above.2.00.....Total.first.returns....100,HWProportion,Profile.area

18 Spp Group

Vol x DBH x Spp Group

USDA Forest Service -- Pacific Northwest Research Station - Resource Monitoring and Assessment Program -- Vegetation Monitoring and Assessment Team

USDA Forest Service -- Pacific Northwest Research Station – Resource Monitoring and Assessment Program -- Vegetation Monitoring and Assessment Team

Manuscript nearly complete

<u>Table ?</u>?. Prediction performances $(R^2 \times 100\%)$ for forest attributes for all species (hs),

hardwood species (hw), and softwood (sw) species

More nuance ...

			P	lot		Stand				
attribute	group	PS	OLS	<u>kNN</u>	RF	PS	OLS	<u>kNN</u>	RF	
ba	hs	67	68	68	75	77	79	85	8	
ba	hw	47	54	72	73	40	67	92	9	
ba	SW	29	55	61	66	41	57	68	7	
bbm	hs	72	71	72	77	84	85	90	9	
bbm	hw	48	42	66	68	44	54	89	8	
bbm	SW	30	53	68	71	35	54	77	8	
cbh	hs	78	91	90	93	86	95	97	9	
cbh	hw	54	60	65	67	46	75	85	8	
cbh	SW	46	52	64	63	58	62	81	7	
den	hs	64	62	66	65	74	70	76	7	
den	hw	44	67	74	74	29	74	86	8	
den	SW	52	67	76	77	76	76	86	8	
lor	hs	89	94	91	95	93	98	98	9	
lor	hw	51	53	58	64	43	68	78	8	
lor	SW	41	43	54	53	53	54	76	6	
amd	hs	70	75	73	76	83	86	90	8	
amd	hw	40	34	41	47	25	55	65	7	
amd	SW	34	37	38	44	57	61	78	7	
t40	hs	85	90	88	91	92	97	97	9	
t40	hw	56	63	67	70	48	77	84	8	
t40	SW	36	39	52	49	47	48	71	6	
vol	hs	71	72	73	78	81	86	89	8	
vol	hw	48	42	68	71	44	54	92	8	
vol	SW	30	52	66	69	37	51	73	8	
median R ²	hs	72	74	73	78	84	86	90	8	
median R ²	hw	48	54	66	69	44	68	86	8	
nedian R²	SW	35	52	62	64	50	56	76	7	

USDA Forest Service -- Pacific Northwest Research station - Resource Monitoling and Assessment Transition - Resource Monitoling and Assessment Team

22 Conclusions

- Stand exceeds plot performance
- kNN, RF performed similarly
- RF is most robust (vol etc., dbh, spp)
- kNN is most convenient (tree list), but sensitive to tuning
- PS fared poorly ⊗
- OLS was mediocre
- Few targeted predictors > many predictors > Automated VS
- HW Index yielded good Vol x HW performance
- Diameter predictions with RF pretty good

Questions?

USDA Forest Service -- Pacific Northwest Research Station – Resource Monitoring and Assessment Program -- Vegetation Monitoring and Assessment Team

Hardwood proportion

Use Random Forest (RF) classification model

- L-moment coefficient of variation of return heights
- Canopy cover (all returns > 2m / total 1st returns)
- Intensity P50 (median)
- Intensity P10
- Classification happens using 2m cells, proportion is computed for plots and 30m cells (area-wide)
- Final classification model: overall classification accuracy: 94%
 - 70% of 2m cells used to build classifier
 - 30% used to compute overall classification accuracy

Lidar data

- Acquisition completed March 2018
- 368 miles²
- 40° FOV, 50% overlap
- ~8+ pulses/m² (aggregate)

Lidar System Acqu	uisition Parameters					
ltem	Parameter					
System	Leica ALS-70 HP					
Nominal Pulse Spacing (m)	0.7					
Nominal Pulse Density (pls/m ²)	4.4					
Nominal Flight Height (AGL meters)	1500					
Nominal Flight Speed (kts)	130					
Pass Heading (degree)	142					
Sensor Scan Angle (degree)	40					
Scan Frequency (Hz)	47.3					
Pulse Rate of Scanner (kHz)	339.2					
Line Spacing (m)	902					
Pulse Duration of Scanner (ns)	4					
Pulse Width of Scanner (m)	0.33					
Central Wavelength of Sensor Laser (nm)	1064					
Sensor Operated with Multiple Pulses	Yes					
Beam Divergence (mrad)	0.22					
Nominal Swath Width (m)	1,150					
Nominal Swath Overlap (%)	50					
Scan Pattern	Triangle					

Plot design

Trees >= 3" DBH on 1/10-acre plot	Plot Size (acre)	# plots
< 9	2/5	217
< 19	1/5	218
19+	1/10	113

GNSS survey for all plots

- Javad Triumph2 receivers on tripods
- 15+ minute occupations with 1 second epochs
- Post-processed
- Anticipated accuracy better than 1m horizontal
- Measured accuracy
 - 10 large rocks that could be identified in point cloud
 - Collect for 15+ minutes
 - Digitize high point on rock in 2009 point cloud
 - Ave difference: 0.52m; StdDev:0.27m; min: 0.14m; min: 1.10m

Lidar metrics

- Clipped point data using plot location and size
- Computed full set of metrics using height & intensity for all plots (grid & mini-stand)
- Also computed metrics over acquisition area for 30m cells

Analysis Overview

Compare: Post Stratification (PS), OLS, kNN

- Validate with mini-stands
 - Measured versus predicted
- Suite of forest metrics
 - BA
 - BA 1 to 3 inches, 3-5 inches ...
 - Vol

. . .

Biomass

Background: Post-Stratification

Assign strata volumes / acre to pixels

Background: kNN Imputation

Prediction

- Get P90 for some pixel (target)
- 74'
- Find a field plot with similar P90 (donor)
- 78'
- Grab Volume from donor
- 6000 ft³/acre
- Give to target
- -> 6000 ft³/acre

USDA Forest Service -- Pacific Northwest Research Station – Resource Monitoring and Assessment Program -- Vegetation Monitoring and Assessment Team

Background: OLS Regression Lidar P99 0_0 Value High: 144.919 Low : 2.02

Lidar Height*Cover

Cubic Volume

USDA Forest Service -- Pacitic Northwest Research Station – Resource Monitoring and Assessment Program -- Vegetation Monitoring and Assessment Team

FBRI FPS Integration

Important to Land manager

In progress:

- Impute tree lists to entire ownership
- Add to FPS
- Compare mini-stand TL projections with predicted TL projections

Current hurdles:

- species crosswalk
- link sqlite database (too big for Access)

💄 🖯 Sr ởr 🕫		PLOTS - Forest Inventory 2019 7.55							TABLE TOO		
FILE HOME CREATE	EXTE	RNAL DATA	DA	TABASE TO	ADD-INS		FIELDS	т			
Database - Selection -	Compil	er - Strata	аŦ	Editors -	SiteGrid - G		Grow	rth -	Sche		
					Custor	n Toolbars					
Tables 💿	« 🗌	STD_ID	•	PLOT	*	TREE	Ŧ	SPEC	IES		
MSvsACEs			7		7		1	LL			
			1		1		2	LL			
MSysNameMap			7		7		3	LL			
MSysNavPaneGroupCateg			7		7		4	LL			
MSysNavPaneGroups			7		7		5	LL			
MSysNavPaneGroupToObj			7		7		6	LL			
MSvsNavPaneObjectIDs			5		5		7	LL			
			7		7		8	LL			
MSysObjects			7		7		9	LL			
MSysQueries			7		7		10	LL			
MSysRelationships			5		5		11	LL			
MESTAREA			3		3		12	LL			
			5		5		12	11			

The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service.)

USDA Forest Service -- Pacific Northwest Research Station -- Resource Monitoring and Assessment Program -- Vegetation Monitoring and Assessment Team

Tree List Imputation

- kNN pretty convenient
- Pull in actual tree records
- Previous study was promising

Artide

An Examination of Diameter Density Prediction with k-NN and Airborne Lidar

Jacob L. Strunk ^{1,4}, Peter J. Gould ², Petteri Packalen ³, Krishna P. Poudel ⁴, Hans-Erik Andersen ¹ and Hailemariam Temesgen ⁴

- ¹ USDA Forest Service Pacific Northwest Research Station, University of Washington, P.O. Box 352100, Seattle, WA 98195-2100, USA; handersen@fs.fed.us
- ² Washington State Department of Natural Resources, P.O. Box 47000, 1111 Washington Street SE, Olympia, WA 98504-7000, USA; Peter Gould@dnr.wa.gov
- ³ Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland; petteri.packalen@uef.fi
- ⁴ Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, Peavy 204, OR 97331-5706, USA; Krishna.Poudel@oregonstate.edu (K.P.P.); hailemariam.temesgen@oregonstated.edu (H.T.)
- * Correspondence: jstrunk@fs.fed.us; Tel.: +1-(541)-737-4457; Fax: +1-(541)-737-4316

Received: 29 September 2017; Accepted: 10 November 2017; Published: 16 November 2017

Abstract: While lidar-based forest inventory methods have been widely demonstrated, performances of methods to predict tree diameters with airborne lidar (lidar) are not well understood. One cause for this is that the performance metrics typically used in studies for prediction of diameters can be difficult to interpret, and may not support comparative inferences between sampling designs and study areas. To help with this problem we propose two indices and use them to evaluate a variety of lidar and k nearest neighbor (k-NN) strategies for prediction of tree diameter distributions. The indices are based on the coefficient of determination (R^2), and root mean square deviation (RMSD). Both of the indices are highly interpretable, and the RMSD-based index facilitates comparisons with alternative (non-lidar) inventory strategies, and with projects in other regions. K-NN diameter distribution prediction strategies were examined using auxiliary lidar for 190 training plots distribute across the 800 km² Savannah River Site in South Carolina, USA. We evaluate the performance of k-NN with respect to distance metrics, number of neighbors, predictor sets, and response sets. K-NN and lidar explained 80% of variability in diameters, and Mahalanobis distance with k = 3 neighbors performed best according to a number of criteria.

Keywords: forest inventory; dbh; diameter distribution; performance criteria

kNN Tree Lists: Example Stands

USDA Forest Service -- Pacific Northwest Research Station – Resource Monitoring and Assessment Program -- Vegetation Monitoring and Assessment Team

Tree List Performance: Overall

Distribution of Plot-Level R.Squared Values Overall R.Squared = 0.7

USDA Forest Service -- Pacit

R.Squared

n Monitoring and Assessment Team

HW / SW Classification

- Identify plots with only hardwood or conifer species for training
 - Used total basal area on plot: 39 hardwood plots, 25 conifer plots
- Compute metrics (height and intensity) using 2m cells
- Isolate 1st returns within 2m of the canopy surface and compute another full set of metrics
- Use Random Forest (RF) with all metrics and then use variable importance scores to select 4 variables for the classification model
 - L-moment coefficient of variation of return heights
 - Canopy cover (all returns > 2m / total 1st returns)
 - Intensity P50 (median)
 - Intensity P10

HW / SW Classification (cont)

- Run RF again with only the 4 variables (split data for training and validation: 70% and 30%)
- Final classification model: overall classification accuracy: 94%
- Use the classification results for 2m cells to compute the proportion of the plot occupied by hardwood species
- Repeat the process using 2m metrics over entire acquisition area to populate 30m cells with the hardwood proportion

Plot protocol

- Trees < 3" DBH (1/10-acre plots)</p>
 - Tally live trees by DBH class (1-2" & 2-3") and species
- Trees \geq 3" DBH (live and dead) (plot size varies)
 - Species, DBH, total height, crown class

