Oregon State University (OSU) Academic Program

Temesgen Hailemariam, PhD, RPF (#3764)

Dept. of Forest Engineering, Resources and Management Oregon State University, Corvallis, Oregon

Operational LiDAR Inventory Meeting

April 7, 2021

Overview

OSU Academic Program – Forest Biometrics & Geomatics

I. Organizational Structure

II. Forest Biometrics and Geomatics (FB&G) Area of Concentration

- Programs/Labs
- Skills Required
- Courses

III. Opportunities

Oregon State University

2 campuses, 11 colleges, 12 experiment stations, Extension programs in all 36 counties, 200+ academic programs

A top 1% university in the world.

More research funding than any university in Oregon.

1 of 2 Land, Sea, Space and Sun Grant Universities in the U.S.

Oregon State University

TOP-TIER ACADEMICS TOP-RANKED COLLEGE TOWN

Oregon State University is an international public research university that draws people from all 50 states and more than 100 countries. We go wherever the challenges are, push ourselves to the very edge of what's known and keep going.

Skills Required for the FB&G Area of Concentration

- Quantitative/ mensurational
- Statistical (MF, MSc, PhD)
- Remote Sensing and Image Processing
- Programming (R, Pyhton, C⁺⁺, MATLAB, IDL, Google Earth Engine, ...)
- Mapping and Geographic Information Systems (GIS)
- Communication Oral and Written

Courses at OSU – Examples of MSc programs

Forest Biometrics option

Forest Geomatics option

Credits

3

3

4

4

3

3

4

4

4

3

4

4

3

4

4

4

4

4

4

4

6-12

45 +

2

SFM Core:	C	redits	SFM Core:	C
FOR 550	Sustainable Forest Management	3	FOR 550	Sustainable Forest Management
FES 521	Natural Resource Research Planning	3	FES 521	Natural Resource Research Planning
ST 521	Introduction to Mathematical Statistics I	4	ST 511	Methods for Data Analysis I
ST 522	Introduction to Mathematical Statistics II	4	ST 512	Methods for Data Analysis I
Required Concent	ration Courses (6 credits, pick two courses):		Dequined Concept	nation Courses ((anodite nichtus courses).
FE 544	Forest Remote Sensing & Photogrammetry	4	Required Concent	ration Courses (o creatis, pick two courses):
FOR 524	Forest Biometrics	3	FOR 520	Geospatial Forest Analysis
FOR 525	Forest Modeling	3	FOR 524	Forest Blometrics
			FES 524	Natural Resources Data Analysis
Example Pool of S	upporting Courses (12-19 credits):		GEOG 561	GIScience II: Analysis and Applications
FOR 520	Geospatial Forest Analysis	3		
FOR 549	Silvicultural Influences on Forest Eco. Dynamics	3	Example Pool of S	upporting Courses (11-19 credits):
BOT 588	Environmental Physiology of Plants	3	FE 515	Forest Road Engineering
FES 524	Natural Resources Data Analysis	4	FE 523	Unmanned Aircraft System Remote Sensing
FES 543	Advanced Silviculture	3	FE 532	Forest Hydrology
GEOG 562	GIScience III: Programming for Geospatial Analysis	4	FOR 536	Wildland Fire Science and Management
GEOG 565	Spatio-Temporal Variation in Ecology & Earth Sci	4	CE 513	GIS in Water Resources
GEOG 566	Advance Spatial Statistics and GIS Science	4	CE 562	Digital Terrain Modeling
ST 531	Sampling Methods	3	GEOG 562	GIScience III: Programming for Geospatial Analysis
ST 541	Probability, Computing, & Simulation in Statistics	4	GEOG 565	Spatio-Temporal Variation in Ecology & Earth Sci
ST 551	Statistical Methods I	4	GEOG 566	Advance Spatial Statistics and GIS Science
ST 552	Statistical Methods II	4	GEOG 580	Remote Sensing I: Principles and Applications
ST 553	Statistical Methods III	4	GEOG 581	Remote Sensing II: Digital Image Processing
ST 565	Time Series	3	ST 512	Methods of Data Analysis III
ST 599	Special Topics: Data Programming in R	2	01 010	Methods of Data Mildysis III
Other Required:			Other Required:	
FOR 503	Thesis	6-12	FE 503	Thesis
FOR XXX	Seminar – see Communication Training	2	FOR XXX	Seminar – see Communication Training
	Total	45+		Total

Courses at OSU – Examples of PhD programs

Forest Biometrics option

Forest Geomatics option

SFM Core:		Credits	SFM Core:		Credits
FOR 550	Sustainable Forest Management	3	FOR 550	Sustainable Forest Management	3
FES 521	Natural Resource Research Planning	3	FES 521	Natural Resource Research Planning	2
ST 521	Introduction to Mathematical Statistics I	4	ST 511	Methods for Data Analysis I	1
ST 522	Introduction to Mathematical Statistics II	4	ST 512	Methods for Data Analysis I	4
Required Concent	ration Courses (6 credits, pick two courses):		Ŭ	·	•
FE 544	Forest Remote Sensing & Photogrammetry	4	Required Concentr	ation Courses (6 credits, pick two courses):	
FOR 524	Forest Biometrics	3	FE 544	Forest Remote Sensing and Photogrammetry	4
FOR 525	Forest Modeling	3	FOR 520	Geospatial Forest Analysis	3
			FOR 524	Forest Biometrics	3
Example Pool of Supporting Courses (51-53 credits):			FES 524	Natural Resources Data Analysis	4
FOR 520	Geospatial Forest Analysis	3	GEOG 561	GIScience II [.] Analysis and Applications	1
FOR 549	Silvicultural Influences on Forest Eco. Dynamics	3	6166 901	energine in maryons and reppiroutions	7
FOR 561	Forest Policy Analysis	3	Example Pool of Sr	innarting Courses (51-59 gradits).	
BOT 570	Community Structure and Analysis	4		Forest Read Engineering	4
BOT 588	Environmental Physiology of Plants	3	FE 515	Forest Road Eligineering	4
FES 524	Natural Resources Data Analysis	4	FE 523	Unmanned Aircraft System Remote Sensing	3
FES 543	Advanced Silviculture	3	FE 532	Forest Hydrology	4
FES 561	Physiology of Woody Plants	3	FE 640	ST: Heuristics for Combinatorial Optimization	3
GEOG 562 CEOC 565	Giscience III: Programming for Geospatial Analysis	54	FOR 525	Forest Modeling	3
GEUG 505 CEOC -66	Advance Spatial Statistics and CIS Science	4	FOR 536	Wildland Fire Science and Management	4
GEOG 500 ST 525	Applied Survival Analysis	4	CE 513	GIS in Water Resources	3
ST 525 ST 541	Probability Computing & Simulation in Statistics	3	CE 561	Photogrammetry	3
ST 551	Statistical Methods I	4	CE 562	Digital Terrain Modeling	4
ST 552	Statistical Methods II	4	CE 564	Global Navigation Satellite System	1
ST 553	Statistical Methods III	+ 4	CE 566	2D Laser Scanning and Imaging	4
ST 555	Advanced Experimental Design	+ 3	CE 500	Soloptific Viewelization	4
ST 557	Applied Multivariate Analysis	3	C5 553	Clear on III. Drogramming for Coognatial Analysis	4
ST 561	Theory of Statistics I	3	GEOG 502	Giscience III: Programming for Geospatial Analysi	ls 4
ST 562	Theory of Statistics II	3	GEOG 565	Spatio-Temporal Variation in Ecology & Earth Sci	4
ST 563	Theory of Statistics III	3	GEOG 580	Remote Sensing I: Principles and Applications	4
ST 565	Time Series	3	GEOG 581	Remote Sensing II: Digital Image Processing	4
ST 567	Spatial Statistics	3	ST 513	Methods of Data Analysis III	4
ST 599	Special Topics: Data Programming in R	2	ST 565	Time Series	3
ST 623	Generalized Regression Models I	3			-
ST 625	Generalized Regression Models II	3	Other Required:		
			FE/FOR 603	Dissertation	36+
Other Required:			FOR XXX	Seminar – see Communication Training	2
FOR 603	Dissertation	36+	10101111	commune over communication framming	-
FOR XXX	Seminar – see Communication Training	2		Total	108-
	Total	108+			

Programming Languages Useful to FB&G Area of Concentration (Extracted from Florin-Daniel Cioloboc @Geomatics Canada)

- Data processing, analysis, and modeling (Python, R)
- GIS Scripting and applications (Python, R)
- Web Mapping (JavaScript, Python)
- Geospatial databases (SQL)
- MapServers (Java, C# .NET, C++)
- GIS heavy-weight development (Java, C/C++, C#)
- Mobile development (Android, iOS, JavaScript)
- Geospatial libraries (JavaScript, Python, Java, R, C/C++)

OSU offers the above languages in different colleges or schools (e.g., CoE, School of Electrical and Computer Science, CEOAS, Dept. of Statistics, etc.)

Facing the Gap

Opportunities Forest Biometrics Option

Advance statistical and mensurational methods & add value to data	Improve efficiencies (e.g., identify stands for thinning, minimize error)				
Expand the use of new technologies (e.g., mobile LiDAR, TLS, remotely sensed data)	Examine growth and yield projections at varying <u>spatio-temporal scales</u> (e.g., tree taper,, millions of acres)				

Applies to Public Land Management Agencies, Forest Companies, Consulting 12 Firms, Academia, NGOs, ...

Completed Research Projects (24 articles)

- 1) LiDAR-based Forest Inventory and Monitoring/Assessment
 - Generating tree-lists
 - Imputing and mapping predictions of selected forest attributes
- 2) Using LiDAR for identifying sites for restoration using LIDAR or satellite images to quantify stand structure and spatial distribution of trees
- 3) Examination of uncertainty in per unit area estimates of above ground biomass using terrestrial lidar
- 4) Fusing multi-level remote sensing and ground data to estimate forest biomass resources in remote regions of Alaska
- 5) Estimation of changes of forest structural attributes at three different spatial aggregation levels in Northern California using multi-temporal LiDAR

Completed Research Projects (Cont'd) (24 articles)

- 6) Develop/compare small area estimation methods using LIDAR and other remote sensing data to:
 - Extend the use of limited ground data to a larger area
 - Borrow strength from remotely sensed data
- 7) Using mobile LiDAR to quantify wood quality. Relating spatial distribution patterns to stand structure, growth and mortality.
- 8) Estimating fire induced basal area mortality with multi-temporal LiDAR
- 9) Using airborne LiDAR as decision support tools for selecting stands for thinning

Current Research Projects (Use Remotely Sensed Data, LiDAR)

- Generating tree-lists from airborne LiDAR (Mauro, Temesgen, Palmer, Bryant, Wolken and Rudisil)
- Using airborne LiDAR to quantify size and distribution of invasive species E.g., *Ventenata dubia* (ventenata, North Africa grass) in the Blue Mountains Ecoregion. (Nietupski, Kerns, Kennedy, & Temesgen)
- 3) Evaluation of maintenance of post-fire forest cover in National Forests (Smith, Ritchie, Mauro, & Temesgen)
- Using airborne LiDAR as decision support tools for Land acquisitions and dispositions (NDA)

Current Research Projects (Use Remotely Sensed Data, LiDAR)

- 5) Species-composition modeling using airborne LiDAR and spectral Indices (Mauro, Strunk, Temesgen)
- 6) Small area models for stand-level inventories using variable radius plot data (Temesgen, Mauro, Frank, Hudak, Palmer,...,)
- 7) Using airborne LiDAR as decision support tools for stratifying and identifying stands for carbon credits (Temesgen et al.)

Acknowledgments I thank:

- Former Graduate Students
- Current Graduate Students: PhD Candidates Karin Kralicek and Ty Nietupski; and Kelly Smith (MSc)
- Drs. Francisco Mauro, Bryce Frank, and Jacob Strunk
- Drs. Ian Moss and Jim Flewelling