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Objective:

Test the limits for species 
identification using easily 

accessible remote 
sensing dataset 



Study area

• Coos Bay lidar acquisition (2009)
• 899 ground fixed radius with GPS 

coordinates plots of 1/10 ac

• Positive: High quality ground data
• Positive: Pre-existing models for several 

structural attributes to complement the 
species classification

• Negative: High dominance of Douglas fir 
in the area



Sources of auxiliary 
information



Lidar predictors (Structure)

Elevation metrics
+

Return proportions
+

Latitude & Longitude
_______________________

90 Lidar metrics



Landsat & Sentinel 2 predictors (Phenology)
Google earth engine

Monthly means, max, min and SD for 5 spectral indexes
ConifersStable spectral signatures
Broad-leavedVarying spectral 
signatures (spring vs winter)



Lidar intensity metrics

Intensity metrics
_______________________

30 Lidar metrics



NAIP imagery from Google earth engine

Image “chips” (26 x 26 pixels)  for each plot
4 Bands per chip: R, G, B, NIR, 4 band ratios NDVI, 

NDWI, bare earth mask & shadows mask



NAIP imagery from Google earth engine
Year 2009: 1 m resolution

Visual inspection, relief shadows and tiling effects
Discarded



Dimensionality reduction of auxiliary information

66Principal components 

Lidar Elevation metrics

Lidar Return proportions

Latitude & Longitude

Lidar Intensity metrics

Landsat indexes

Sentinel 2 Indexes

PCA



Ground data



Ground data

• Tree measurements of DBH, Species tree 
heightVolume

• Plots contain several trees  Systematic way to 
define categories for species classification

• Plot sizes (1/10 ac) Stand size (20-50 ac) 
(200-500 modeling units)



Dominant species
Species Plots % Plots
DF 704 78.31%
WH 56 6.23%
RA 29 3.23%
BM 28 3.11%
RC 27 3.00%
GF 16 1.78%
PC 11 1.22%
TO 10 1.11%
OM 10 1.11%
KP 2 0.22%
SS 2 0.22%
LO 1 0.11%
GC 1 0.11%
PP 1 0.11%
WO 1 0.11%

Species Plots % Plots
DF 704 78.31%
WH 56 6.23%
RA 29 3.23%
BM 28 3.11%
RC 27 3.00%
GF 16 1.78%
PC 11 1.22%
TO 10 1.11%
OM 10 1.11%
Other 8 0.89%

Direct reclassification

Categories based on dominant species
Dominance defined based on Volume proportion



Ground data
All Douglas fir               No Douglas fir



K-NN Imputation models:
• 1 to 5 Neighbors
• Gower distance and random forest distance
• Random forest distance with k = 1 best model
• Overall accuracies above 80% but DF proportion in the 

area is 78%
• Kappa indexes 0.68 in the best case. (Poor-moderate)

Douglas fir is 
so dominant 
that most 
species go to 
Douglass fir



Definition of new categories:
• Defining categories based on the dominant 

species  very imbalanced dataset (~80% DF)

• Also, with 1 dominant speciesMany unknowns
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Redefining the 
problem



Definition of new categories:

We look at different ways of defining new 
categories for the classification problem.

1. Proportions based on different Volume 
thresholds

2. Clusters of species proportions

3. Combinations based on first 2 dominant 
species



Exploratory analysis
More mixing for plots with low or medium Volume 

DF ~ 95%

DF ~ 75%



Exploratory analysis

Cluster analysis to identify “groups of associated species”

Based on  Volume by species, proportion of Volume by species, both
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Categories based on dominant species
Dominance defined based on Volume proportion

2 Species comb # of plots %plots
BM:DF 89 9.90%
BM:RA 11 1.22%
DF:GC 13 1.45%
DF:GF 54 6.01%
DF:OM 61 6.79%
DF:PC 21 2.34%
DF:PM 17 1.89%
DF:Pure 79 8.79%
DF:RA 88 9.79%
DF:RC 84 9.34%
DF:TO 51 5.67%
DF:WH 201 22.36%
Other 102 11.35%
RA:WH 13 1.45%
RC:WH 15 1.67%

• One class with 
was pure 
Douglas fir

• One class with 
combinations 
involving minor  
species

• Douglas fir & 
Hemlock 200



Definition of new categories:
• Defining categories as combinations based on 

the first 2 dominant species  provided more 
balanced groups

• It makes the problem slightly different
• As with the dominant species. We don’t know 

“HOW dominant” the species are
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Random forest models for classification:

• Kappa = 0.13

• 4 categories 
completely 
missed

• Very few 
assignments 
conif+conif
Hardw+Hardw



K-NN Imputation models:

• Overall accuracies above 80%
• Ongoing process
• Kappa indexes 0.86 in the best case. (Improved the 

performance)
• Part of the success More balanced classes



K-NN Imputation models:



Question (with an answer):

Which one is 
our forest?
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Question (without an easy answer): 

Aggregation to stand 
values. 1 Stand can be 
200-500 pixels

More important How to 
validate the 
aggregation



Conclusions on the classification:

• Imputation worked better than Random Forest
• Making 2 species categories help breaking the 

imbalance of the dataset
• Improvements are necessary.

• Positive: We do better than classifying at 
random. Improvements god to moderate. 

• Negative: Classifications provide little 
information about the species mixing.

2 Questions: How much detail we need and at what level. 
Stands, plots-pixels? How to validate at stand level.



Thank you for your 
attention
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