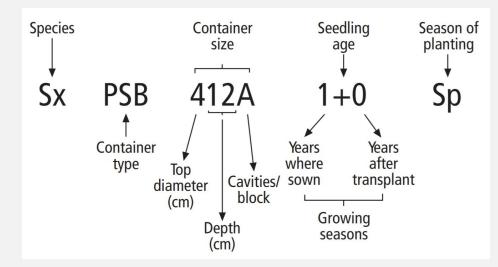


University of Idaho

College of Natural Resources

RECONSIDERING STOCKTYPE SIZES: LONG-TERM RESULTS FROM A STOCKTYPE COMPARISON STUDY IN NORTHERN IDAHO

ANDREW S. NELSON CENTER FOR FOREST NURSERY & SEEDLING RESEARCH


40th Annual Inland Empire Reforestation Council Meeting

March 3, 2020

WHAT IS A STOCK TYPE?

- Defined by the seedling's <u>age</u> and the <u>basic method by which it was</u> produced (e.g., bareroot, container, etc.)
 - Inexactly implies seedling size and provides no information about physiological condition
- Objective of selection is to decide, by species, site conditions, and experience, the seedling characteristics that best suite each site
- STOCK TYPE IS ONE OF ONLY A FEW THINGS A CUSTOMER CAN REQUEST FROM THE NURSERY TO MEET THEIR REFORESTATION NEEDS

Source: BC Min of Forestry. 1998. Provincial seedling stock type selection and ordering guidelines. 80 p.

BAREROOT STOCK TYPES

I

PLATE 1. Examples of seedlings grown as bareroot stock types.

Source: BC Min of Forestry. 1998. Provincial seedling stock type selection and ordering guidelines. 80 p.

CONTAINER STOCK TYPES USUALLY DEFINED BY CONTAINER TYPE AND CELL SIZE (THERE ARE MANY)

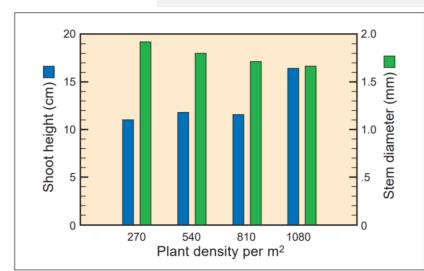
Charles blooks

	Tray Dim	ensions: 2	3 5/8 x 13 7	/8 inches / 600 >	352 mm				Ce	II Spec	ificatio	ns –		
	, 200						Cell Specifications							
Series	# of Cells	Planting Density		Volume	Designation		Diameter Top Drain Hole		Actual Volume		Cell Depth			
		/sq.ft	/sq.m	Spec	Metric	US	in	mm	in	mm	cu.in	mi	in	mm
400	20 x 20 5/8 in (322 x 322 mm)	354.3	3814	5	105C		0.5	12	0.4	9	0.3	4.5	1.75	44
540	30 x 18	237.2	2557	8	105A		0.56	14	0.42	11	0.5	8	2.00	51
308	22 x 14	135.3	1458	8	105B		0.56	14	0.42	11	0.5	8	2.00	51
448	28 x 16	196.2	2121	17	207A	1	0.69	17	0.47	12	1.0	17	2.82	72
			1135	18	206A		0.9	23	0.31	8	1.1	18	2.48	63
240	20 x 12	105.9		40	211A	2A	0.95	24	0.36	9	2.4	39	4.47	113
				50	213A	ЗA	0.95	24	0.55	14	3.0	49	5.09	129
209	19 x 11	92.6	996	40	310A		1.00	25	0.55	14	2.4	40	4.10	104
			936	40	310C		1.00	25	0.55	14	2.4	40	4.10	104
100	100 100			45	311A		1.02	26	0.55	14	2.6	45	4.33	110
198	18 x 11	87.3		50	312A		1.07	27	0.55	14	2.9	48	4.75	121
				60	313A	4A	1.10	28	0.45	11	3.7	60	5.21	132
		70.4	852	60	309A		1.10	28	0.75	19	3.7	60	3.74	95
180	18 x 10	79.1		70	313C		1.13	29	0.73	18	4.0	66	5.21	132
	16 x 10	70.6	756	60	310B	4S	1.18	30	0.61	15	3.3	54	4.07	103
160				65	313B	4	1.17	30	0.55	14	3.9	65	4.97	126
100				90	315B	5.5	1.18	30	0.73	18	5.5	90	5.96	151
				120	323A	7	1.18	30	0.45	11	7.3	120	8.94	227
144	16 x 9	63.5	681	80	411B		1.24	31	0.55	14	4.9	80	4.33	110
144				95	313D		1.28	32	0.73	18	5.8	95	5.21	132
128	16 x 8	56	609	80	410C		1.875 x 1.375	37 x 30	0.75	18	4.9	80	4.00	101
	14 x 8	49.4	530	80	410A	6S	1.42	36	0.30	20	4.9	80	4.07	103
112				95	412B		1.42	36	0.86	22	5.8	95	4.58	116
				105	415B	6	1.40	36	0.86	22	6.6	108	5.83	148
91	13 x 7	40.1	430	130	415C	8L	1.53	39	0.86	22	7.9	130	5.96	151
				80	410B		1.43	36	0.55	14	4.9	80	4.07	103
77	11 x 7	34.0	364	125	412A	10S	1.64	42	0.86	22	7.6	125	4.58	116
				170	415D	10	1.65	42	0.86	22	10.0	164	5.96	151
60	10 x 6	26.5	5 284	220	512A	15S	2.05	52	0.86	22	13.4	220	4.69	119
				250	515A	15	2.00	51	0.73	18	15.3	250	5.96	151
	9 x 5	19.8	213	340	615A	20	2.33	59	0.73	18	20.5	336	5.96	151
45				450	620A	28	2.33	59	0.73	18	26.9	440	7.95	202
35	7 x 5	15.4	166	440	815C		3.01	78	1.00	25	26.9	440	5.96	151
	7 x 4	12.3	132	340	615B		2.33	59	0.73	18	20.5	336	5.96	151
28				500	623A	30	2.33	59	0.95	25	31.7	520	8.94	227
24	6 x 4	10.5	113	700	815A		3.24	82	1.00	25	42.7	700	5.96	151
	0 / 4	10.0	110	535	815B		3.00	76	1.25	32	32.6	535	5.96	151
20 15	5 x 4	8.8	95	700	723A	45	2.73	69	0.98	25	43.3	710	8.94	227
	5 x 3	6.6	71	1000	1015A	60	3.97	101	0.98	25	61.0	1000	5.91	150
3	4x2	3.5	38	3000	1318A	Gallon	6.19	157	0.98	25	195.2	3200	7.02	17

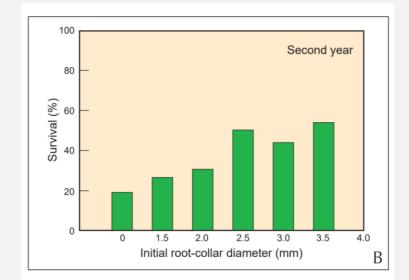
Source: bpgrower.com

INTERIOR DOUGLAS-FIR CONTAINER STOCK TYPES

WESTERN LARCH CONTAINER STOCK TYPES


WESTERN WHITE PINE CONTAINER STOCK TYPES

STOCK TYPE SELECTION CONSIDERATIONS SEEDLING SIZE

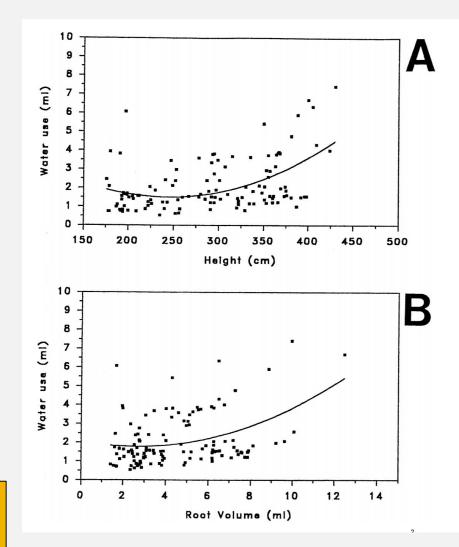

- I Select the seedling size that overcomes the site limiting factors
- I Principles of container size and age:
 - Longer time for growth = taller seedlings and larger stem diameters
 - Larger container sizes = more roots, larger diameter, and typically taller
 - Wider seedling spacing = more branching and larger diameter

Same cell size, different spacing

Ritchie et al. 2010. Chp 2, Vol 7. CTNM Adapted from Timmins & Tanaka 1976

E. Spruce survival by stem diameter

Ritchie et al. 2010. Chp 2, Vol 7. CTNM Adapted from Hines & Long 1986



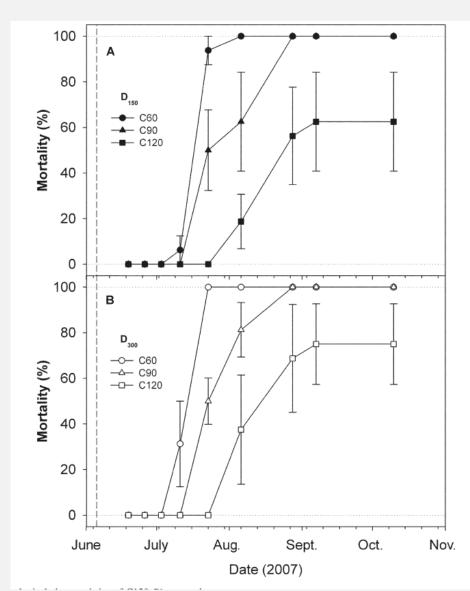
STOCK TYPE SELECTION CONSIDERATIONS

LIMITING FACTORS - DROUGHT

- Select drought-tolerant species & time planting to avoid drought period (i.e. spring)
- Well-branched, woodier stems, and hardened tissues (stress resistant) minimize water loss
- Avoid stock with large shoots & poorly developed or small root systems. Need well balanced seedlings

Taller seedlings have more needles, increasing water loss. If new root growth does not increase too, seedlings can lose too much water

Carlson and Miller. 1990. Target Seedling Symposium


STOCK TYPE SELECTION CONSIDERATIONS

LIMITING FACTORS – VEGETATION COMPETITION

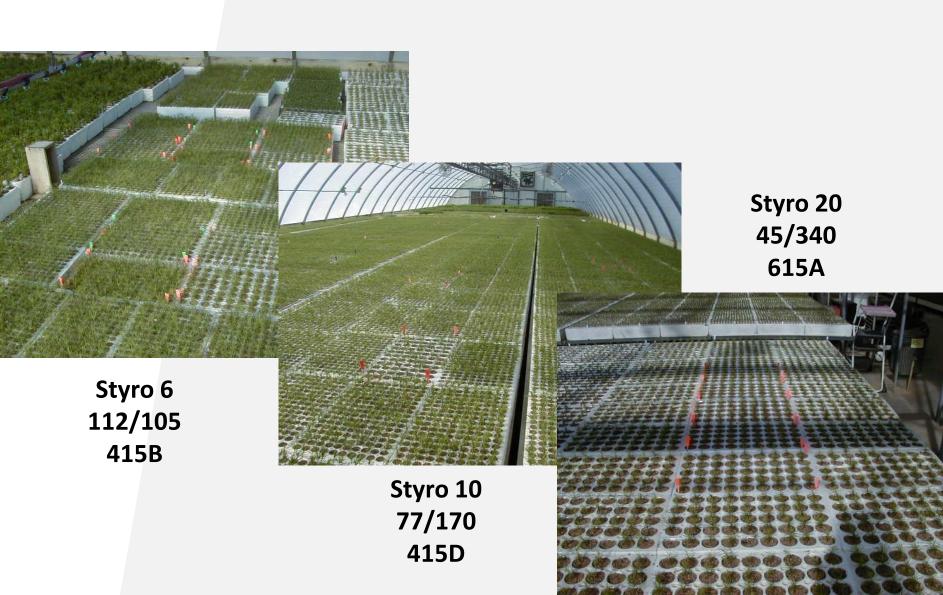
Larger stocktypes may give seedlings better ability to withstand competition

> Larger stocktypes (circles) had lower mortality with high grass competition (bottom graph) compared to smaller container sizes

Pinto et al. 2012. CJFR 42: 333-344.

3/10/2020

STOCK TYPE RESOURCES


INLAND NORTHWEST STOCK TYPE STUDY

- Each unique species and stocktype were randomly assigned a row within 3 or 4 blocks per site
- 20 seedlings per row, spaced 8 ft within a row and 10 ft between rows
- Running Iron planted late April 2007
- **I** Cameron Creek planted early June 2008
- Initial, 1 year, 2/3 year, and 11/12 year (2019) measurements of height, diameter, and survival

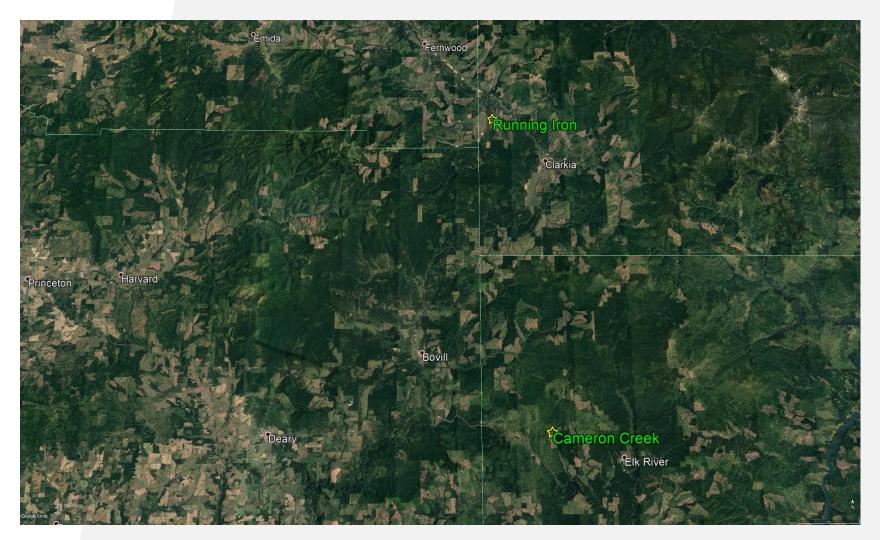
Species	Styro 4	Styro 5	Styro 6	Styro 8	Styro 10	Styro 20
Interior Douglas-fir	X		X	X	X	X
Western larch	X		X	X	X	X
Western white pine		X	X	X	X	Х

NURSERY PROPAGATION

DOUGLAS-FIR

INITIAL SEEDLING SIZE

Stocktype	Height (cm)	Caliper (mm)
Styro 4	17.6 (12.6-23.5)	2.8 (1.9-3.9)
Styro 6	17.9 (12.6-27.6)	3.1 (2.3-4.4)
Styro 8	18.5 (12.4-22.9)	3.4 (2.3-4.1)
Styro 10	17.5 (8.9-26.2)	3.6 (2.4-4.7)
Styro 20	33.8 (21.9-46.3)	4.8 (1.7-7.6)


WESTERN LARCH

WESTERN WHITE PINE

Stocktype	tocktype Height (cm)		Stocktype	Height (cm)	Caliper (mm)	
Styro 4	15.5 (10.5-27.4)	2.8 (2.1-3.6)	Styro 5	13.1 (7.0-23.0)	3.3 (1.9-4.4)	
Styro 6	15.2 (10.4-22.4)	3.2 (2.4-4.3)	Styro 6	14.5 (6.3-30.7)	3.6 (2.6-5.4)	
Styro 8	15.7 (10.5-25.5)	3.4 (2.4-4.4)	Styro 8	13.1 (7.0-25.5)	3.7 (2.6-5.0)	
Styro 10	15.0 (9.8-22.8)	3.6 (2.5-4.8)	Styro 10	13.7 (6.0-22.7)	4.0 (2.7-5.2)	
Styro 20	27.7 (11.2-39.4)	5.4 (2.8-7.9)	Styro 20	15.4 (6.4-29.2)	4.8 (3.5-6.4)	

TWO SITES IN NORTHERN IDAHO

RUNNING IRON

- 117-acre stand
- Planted spring 2007
- <u>Northwest aspect</u>
- 17% slope, 2900 ft elevation
- Western
 - redcedar/queencup beadlily habitat type
- Site prep: broadcast burn

RUNNING IRON

RUNNING IRON - BEGINNING

RUNNING IRON - AGE 3

Styro 20 DF

Styro 20 WL

CAMERON CREEK

I64-acre stand
IPanted spring 2008

Southwest aspect

- 19% slope, 3100 ft elevation
- Western redcedar/queencup beadlily habitat type
- Site prep: broadcast burn

CAMERON CREEK

CAMERON CREEK – YEAR 2

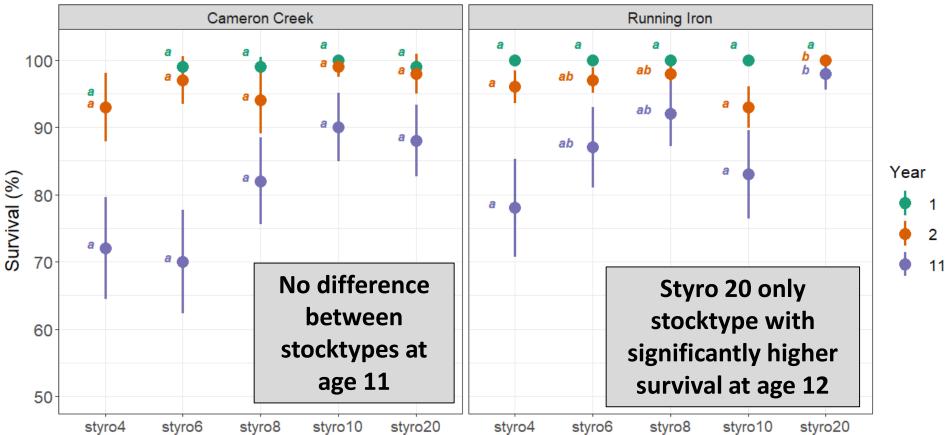
Cameron Creek - Rep 1 Second Year, Styro 10 Douglas-fir, Red UI Greenhouse

> Cameron Creek - Rep 1 Second Year, Styro 10 Western Larch, Red UI Greenhouse

12-year old Styro 8 Douglas -fir

2019 **MEASUREMENTS**

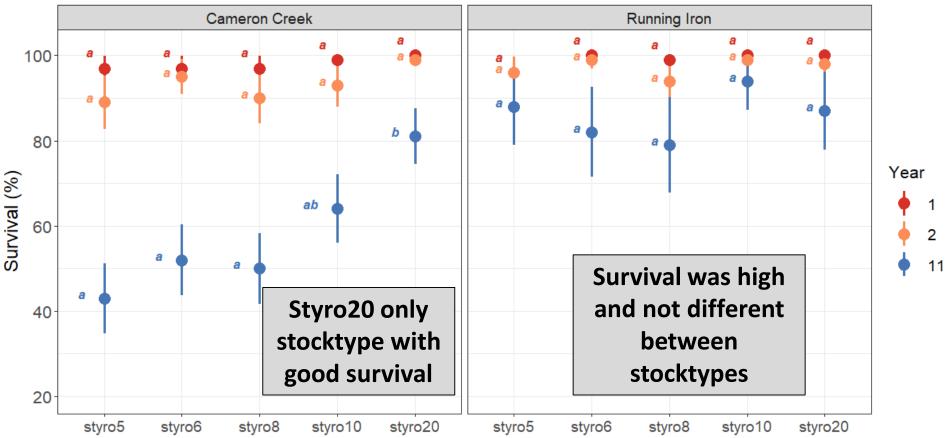
11TH GROWING SEASON AT CAMERON CREEK

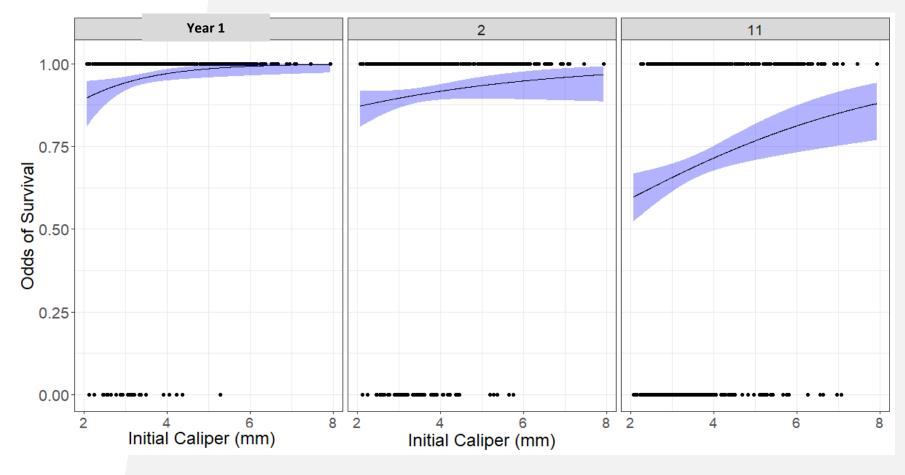

12TH GROWING SEASON AT RUNNING IRON

SURVIVAL BY STOCK TYPE

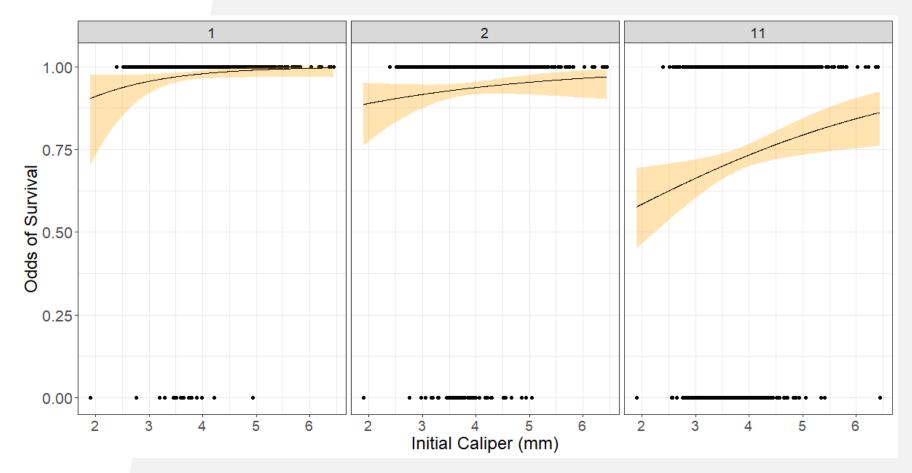
Interior Douglas-fir

SURVIVAL BY STOCK TYPE


Western Larch


SURVIVAL BY STOCK TYPE

Western White Pine

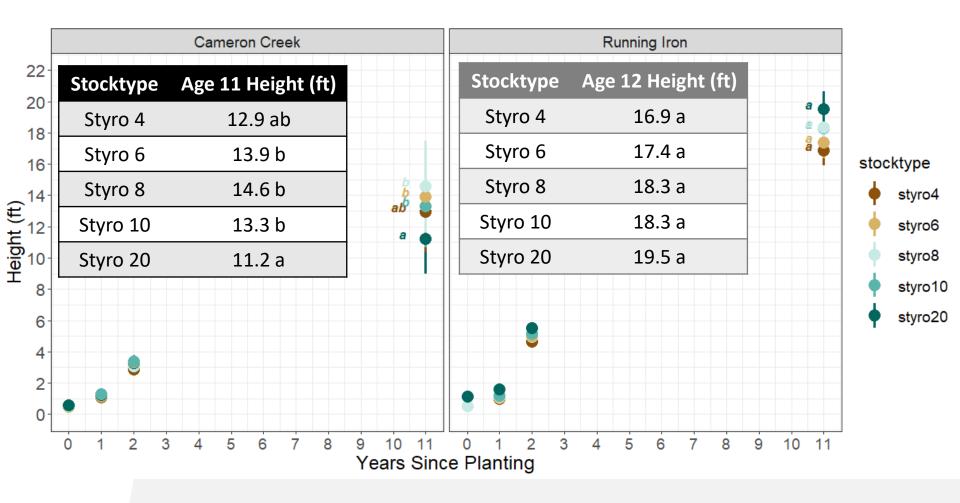

INDIVIDUAL WESTERN LARCH SURVIVAL

Year 1: Odds of a seedling surviving increased 2 x for each 1 mm increase in caliper Year 2: Odds of survival increased by 1.3x for each 1 mm increase in caliper Year 11/12: Odds of survival increased by 1.3x for each 1 mm increase in caliper

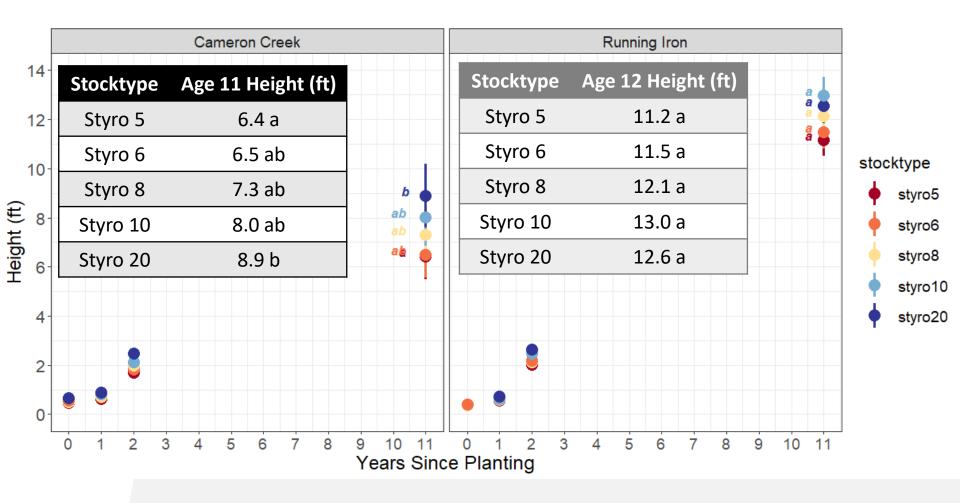
INDIVIDUAL WHITE PINE SURVIVAL

Year 1: Odds of survival increased by 2.2x for each 1 mm increase in caliper

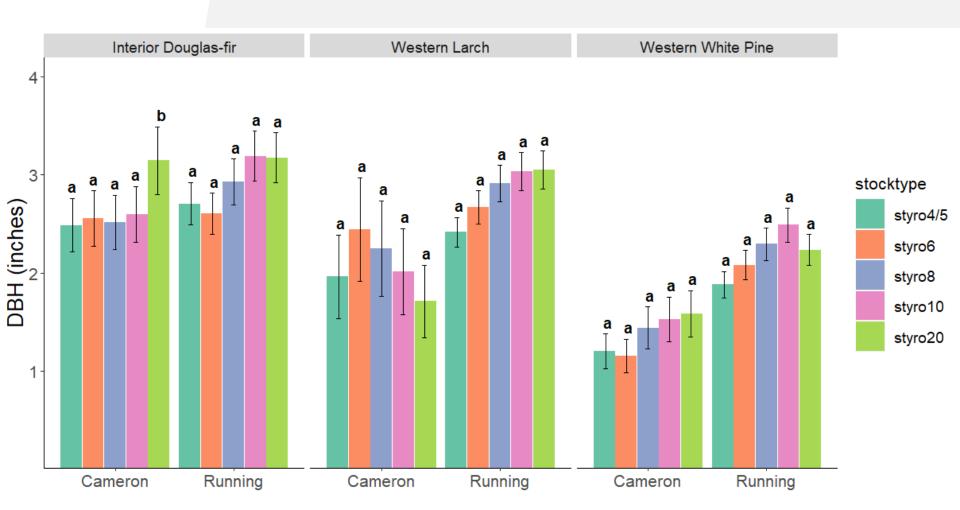
Year 2: Odds of survival increased by 4.3x for each 1 mm increase in caliper Year 11/12: Odds of survival increased by 0.7x for each 1 mm increase in caliper



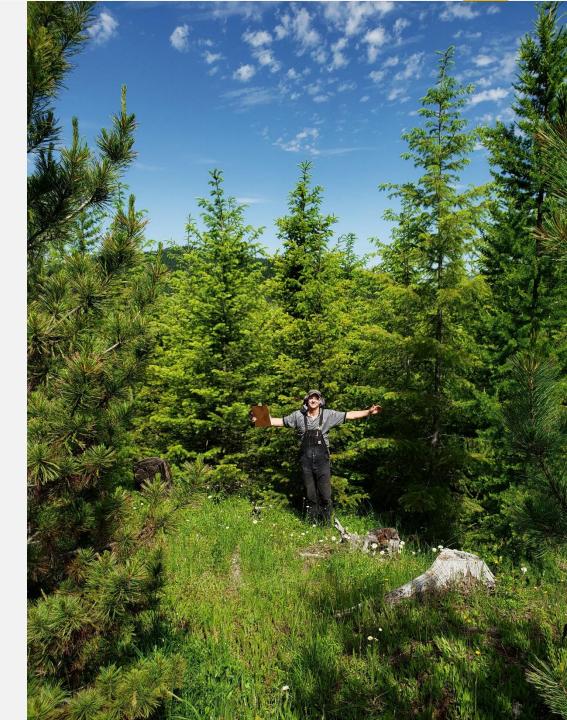
INTERIOR DOUGLAS-FIR HEIGHT



WESTERN LARCH HEIGHT

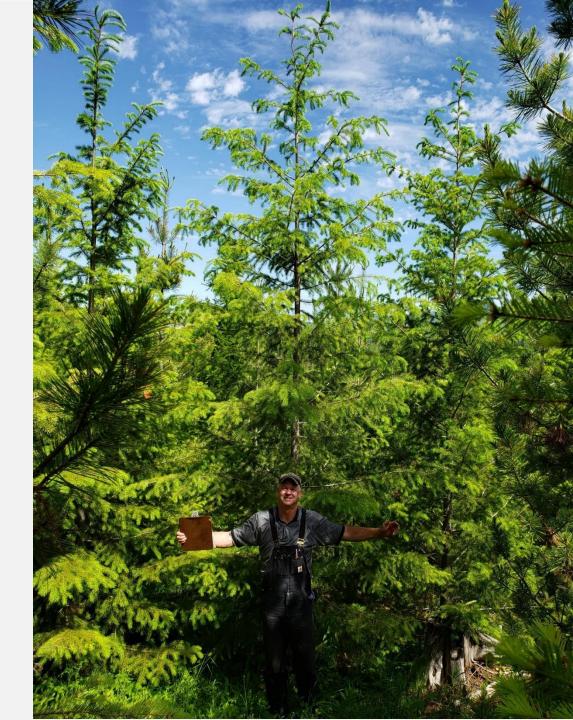


WESTERN WHITE PINE HEIGHT



Ι

DIAMETER AT BREAST HEIGHT (AGE 11/12)



AGE 12 STYRO 4 DOUGLAS-FIR AT RUNNING IRON

3/10/2020

AGE 12 STYRO 8 DOUGLAS-FIR AT RUNNING IRON

SUMMARY

- Survival was high for the first 2 or 3 years after establishment but decreased by 11/12 years. Survival only greater for styro 20
- Seedlings consistently had lower survival at Cameron Creek (Harsher site?: steep slope and southwest aspect)
- Larger initial caliper resulted in greater survival for WL and WWP at ages 11 and 12, but not DF
- Lower nursery cost for smaller stock types may overcome lower survival and higher number of planted seedlings to achieve adequate stocking at age 12
- Stock type had minimal effect on tree height or diameter at ages 11 and 12, suggesting similar trends in volume over time

ACKNOWLEDGEMENTS

- PotlatchDeltic Corp. funded the initial study installation and measurements, and continued support over the years
 - John Mandzak was instrumental in project initiation
 - Chance Brumley and Abbie Acuff helped relocate study sites and provided stand history data
- All the CFNSR staff and students, and PotlatchDeltic staff over the years that grew, planted, and measured the seedlings
- Jordan Nate (PotlatchDeltic Corp. Intern), Sara Smith, and Aaron Daughtree (CFNSR Interns) helped with 2019 data collection

