

Paul Reed¹ | Megan Peterson² | Laurel Pfeifer-Meister¹ | Dan Doak² | Bill Morris³ Bitty Roy¹ | Bart Johnson¹ | Graham Bailes¹ | Aaron Nelson¹ | Scott Bridgham¹

¹University of Oregon, USA | ²University of Colorado Boulder, USA | ³Duke University, USA 8th Western Native Plants Conference | Olympia, WA | November 14, 2019

Species range distribution

Area of occurrence controlled by dispersal ability, climate/habitat tolerance, biotic interactions, etc.

(Ettinger & Hille Ris Lambers, 2017)

Juniperus communis range map.

(Thompson et al. 1999)

Climate change threatens species current ranges

Average shift of 6.1 km per decade towards the poles (across 99 taxa; Parmesan & Yohe, 2003)

To predict future shifts and species persistence: Critical to understand population responses to climate change across/beyond ranges

A theoretical range shift

(Ettinger & Hille Ris Lambers, 2017)

A threat to native biodiversity

A threat to native biodiversity

A threat to native biodiversity

Under future climates:

Can native prairie species persist in their current ranges?

Can they establish and maintain stable populations beyond their current northern limits?

HOPS (Heating of Prairie Systems) Experiment

HOPS (Heating of Prairie Systems) Experiment

Perennials: tracked individuals through 2016-2018 growing seasons

Modeled species vital rates:

- Survival
- Growth
- Fecundity
 - Probability of reproduction
 - Flower/fruit/seed production
 - o Probability of germination

Perennials: tracked individuals through 2016-2018 growing seasons

- Used integral projection models (IPMs) that relate state of an individual (size) to its vital rates to project population dynamics
- Calculated population growth rates (λ) for each treatment at each site over both annual transitions

Climate does not currently limit range-restricted species' northern boundaries.

Warming and drought would cause population decline within current ranges but not beyond species' northern limits.

Range-restricted perennials established

north of leading edges

Reproductive adults of Ranunculus austro-oreganus (left) and Sidalcea malviflora (right) at the Northern site in 2017.

Most species failed to establish at one or more sites within current ranges, especially in the south

Climate treatments had neutral to positive effects on λ beyond northern limits of range-restricted species

However:

Ranunculus populations still well below replacement level ($\lambda < 1$)

Warming+ppt

Warming

DroughtControl

Warming had neutral to negative effects on λ within current ranges

'Leading-trailing' patterns observed, accentuated by climate change

Conclusions

Species face challenges within current ranges, especially towards the hotter, drier south.

"Californication" of PNW prairies

Invasive annual grasses

(Pfeifer-Meister et al., 2016)

A southern warming plot in 2017 dominated by the invasive winter-annual grasses Bromus tectorum and Bromus hordeaceus.

Microseris laciniata

Only established in the north, where $\lambda \leq 1$ and <<1 under warming.

λ < 1 in four natural populations from 2015-2018.(Peterson et al., in prep)

Achnatherum lemmonii

Failed to establish with germination ~1.0%.

Greenhouse germination ~0.05%.

Natural populations are small and disjunct. Inbreeding depression?

 $\lambda \le 1$ in four natural populations from 2015-2018. (Peterson et al., in prep)

Restoring for future climates

- Actively manage to promote genetic diversity
- Increase habitat connectivity to facilitate natural migrations

Can species disperse to new habitat?

• If not – intervention may be necessary to save species from extinction

Acknowledgments

Funding: NSF MacroSystems Biology

Field assistants: Kathryn Nock, Megan Sherritt, Xing Wu, Leah Thompson, Laura McCollough, Matthew Krna

