

BIOCHAR IN THE WOODS: WHAT TECHNOLOGIES ARE BEST FOR SMALL SCALE PRODUCTION?

Natchez Fire, Rogue Siskiyou NF

Ignition, July 15, 2018

Jackpot piles burn hot & complete

- Tight piles don't fall apart
- Burn hot in the center
- Burn completely to ash
- Generate smoke
 - Burn forest soil

Burn pile scars are long-lasting

Pile burning can create grass and forb-filled openings that often remain treeless for decades, as can be seen in this aerial photo of a 40-year-old regenerating lodgepole pine stand in Grand County, Colorado. (Photo by C. Rhoades)

Is there another way to treat problem fuels?

Bottom Lit vs. Top Lit Burn Pile

- Conventional: Flame under cold biomass makes smoke
- Top Lit: Light on top heat transfers to pile by radiation
- Flame on top burns smoke

1. Light it on top

2. Quench with water to save char

Flame Carbonization

Making biochar in an open flame

- Biomass burns in 3 stages.
- To make char, stop the process before it goes to ash.

It is all about controlling the oxygen to prevent the final stage of combustion – oxidation of the char

For greater efficiency: Flame Cap Kiln

MOKI Manufacturing Co. Ltd. Nagano, Japan

- Pan excludes air from the bottom
- Flame on top uses up all the oxygen and burns the smoke
- Char is protected from air and does not burn

Can be any shape – pit, pyramid, cone, ring, trench, box

Super Cheap and Simple: Ring of Fire Kiln

Umpqua Biochar Education Team (UBET)

We made 70 cubic yards of biochar during the two year project.

Design Parameters - the Oregon Kiln

- Sized for feedstock
 - Logs 4 to 5 feet long
 - Up to 6" diameter
- Portable but durable
 - Less than 200 lbs
 - 14 gauge steel
- Ergonomic for loading
 - Only 2 feet high
- Capacity
 - Makes > 1 cy of biochar in about 4 hours

How to operate a Flame Cap Kiln

- Pile loosely
- Light on top

Once the first pile burns down, add more

- Add new material, one layer at a time
- Make sure each layer has the same size material

Quenching Time

Quench when kiln is full and flame is gone

Snuff Quenching

Double-walled Ring of Fire Kiln

Oregon Kiln

Drew Biochar Project – Umpqua Biochar Education Team

- 17 acres of thinning
- Removal of small trees
- Umpqua National Forest

Stewardship Contract awarded to South Umpqua Rural Community Partnership – www.surcp.org

Three days,166 cubic yards of forest slash, 28 cubic yards of biochar

Project Planning

Based on Drew Veg Biochar Project

Project size and volumes	
project size, ac	17
tree/ac	800
volume of piled slash, cy	396

Labor crew size		
crew size, # of kiln tenders (each tender operates 2 kilns)	6	
crew size, # of machine operators	1	

Total crew size: 7 people

Labor Time and Machine Hours

Machines and machine hours	
loader to place kilns and move slash, hrs/day	6
water tender for quenching, hrs/day	2

Labor hours		
crew set up time, hrs	1	
biochar burning time per kiln batch, hrs	4	
quenching and unloading, hrs	2	

Total daily job time, including setup and quench, 7 hours

Outputs

Production volumes		
assumed conversion efficiency, biomass to biochar, by volume	16.70%	
volume slash consumed per kiln batch, cy	6	
biochar output per kiln batch, cy	1	
number of kilns	12	

Daily output	
total biochar output per day, cy	12
total slash processed per day, cy	72

- 5.5 days to process all slash
- 66 cy of biochar produced

Climate Impact

- Assume one cubic yard of biochar weighs 200 pounds
- 66 cy x 200 pounds = 6.6 tons of biochar
- 6.6 tons x 80% fixed carbon fraction x 44/12 = 19.4 tons
 of CO2 sequestered from one 17 ac thinning project.

Average American emits approx. 20 tons CO₂ per year

Restore Nature, Restore Climate

NATURAL CLIMATE SOLUTIONS

TOP 10 MITIGATION PATHWAYS' WITH CO-BENEFITS

Natural Climate Solutions have the same impact on emissions as taking millions of cars off the road

REFORESTATION	650M
AVOIDED FOREST CONVERSION	620M
NATURAL FOREST MANAGEMENT	← 189M
AVOIDED PEATLAND IMPACTS	← 143M
CROPLAND NUTRIENT MANAGEMENT	— 136M
TREES IN CROPLAND	→ 94M
PEATLAND RESTORATION	→ 84M
CONSERVATION AGRICULTURE	→ 80M
RESTORATION OF COASTAL WETLANDS	59M
AVOIDED COASTAL WETLAND IMPACTS	€ 43M
	Clabal Mitigation Potentials Annyayimata Number of Care Demoved Feeb Veer in Millions

Global Mitigation Potential: Approximate Number of Cars Removed Each Year in Millions

We need to Scale It UP!

Big Box Biochar

Yew Creek Land Alliance, OR

Menoken Farm, ND

GO BIG - Boots on the Ground

Civilian Conservation Corps

 President Franklin Delano Roosevelt proposed the CCC program to Congress on March 21, 1933:

I propose to create [the CCC] to be used in complex work, not interfering with normal employment and confining itself to forestry, the prevention of soil erosion, flood control, and similar projects.

Carbon Conservation Corps

- A service year for young people
- Improve forest health and protect communities from wildfire
- Pay them to sequester carbon in biochar
 - PHYSICAL FITNESS
 - A SENSE OF PURPOSE
 - HOPE FOR THE FUTURE

Planting trees in biochar – Ashland Forest Resiliency Project

Cut, Pile & Burn vs Cut, Char & Quench

Item	CP&B	CC&Q
Cut (chainsaw work)	\$350	\$350
Pile (5-8 piles/hr per worker)	\$600	
Burn (20 piles/acre, using drip torch)	\$150	
Biochar Kilns (3 - 4 kilns per acre, 1 person feeds 2 kilns)		\$600
Quenching water (water truck & operator)		\$150
Total cost/acre	\$1100	\$1100

Growing Number of Projects and Partners

- NRCS
- USFS
- USDA-ARS
- Oregon Department of Forestry
- North Dakota Forest Service
- Nebraska Forest Service
- Kansas Forest Service
- Utah State University Extension
- Oregon State University Extension
- South Umpqua Rural Community Partnership
- Long Tom Restoration Council
- Yew Creek Land Alliance
- Illinois Valley Community Development Organization
- Two Rivers SWCD
- Ridge to Reefs

Charring Pinyon-Juniper in Utah

Questions?

Kelpie Wilson

Wilson Biochar Associates Home office: 541-592-3083

Mobile: 541-218-9890 kelpiew@gmail.com

www.wilsonbiochar.com

Wilson Biochar Associates specializes in biochar technology and market development. We provide strategic advice and services to businesses and organizations.

- Technology Assessment
- Research and Analysis
- Project Development

