

Techno-economic Analysis of Biochar Production Using Portable Systems

Kamalakanta Sahoo

Richard Bergman

E.M. (Ted) Bilek

Forest Products Laboratory, United States Forest Service, One Gifford Pinchot Drive, Madison, WI

WFCA, Vancouver, WA, 2019, April 25

Forest Products Laboratory and Research Priorities

- Founded in 1910 by the U.S. Forest' Service and located in Madison, WI
- The Nation's source for unbiased wood research and technical information
- A long history of cooperative research and public service

- Advanced Composites
- Advanced Structures
- Forest Biorefinery
- Nanotechnology
- Woody Biomass

- Life cycle assessment and techno-economic analysis of forest based products
- Supply chain modeling, simulation and optimization

Biochar market: Present and Future

- Biochar companies rose from 200 in 2014 to 326 companies in 2015
- \$ 3.1 billion by 2025 with a CAGR of 13.2% (www.grandviewresearch.com)
- US biochar production- 94,000 tonnes in 2014 to 285,000 tonnes by 2025.
- ~35 US policies that support biochar production (15 are commercial financial incentives)
- Biochar price in the US varies between (\$1360-3864/ton)

Background: Why biochar?

Scattered residues

(81-116 million dry tons of forest biomass)

Piling residues: \$150-200/hectare Site preparation:\$750-2000/hectare Air quality issues, Wild fires

WASTETO SDOM

- Require higher quality feedstock (less contamination, low moisture content, uniformsize, etc.)
- Large plant (high capital investment & risks, Higher logistics cost, Uncertainties

Liquid biofuels

➤ To analyze the economic feasibilities [i.e., estimate minimum selling price (MSP)] of portable biochar production systems at near-forest (remote sites) and in-town locations.

➤ To perform sensitivity analyses to identify critical factors affecting economic performances of portable systems and suggest improvements.

Biochar production using portable systems

Biochar Solution Inc. (BSI)

Feedstocks specifications and system throughput

Species	Contaminant	Comminution method	Moisture content (wet basis)	Portable system	Throughput (*kg/hr/unit) or **kg/batch/unit	Biochar yield (%)
Conifer	None	Ground	16.93%	BSI	*386	14.8%
Conifer	9% soil	Ground	14.91%	BSI	*341	11.7%
Conifer	none	Chip, medium	25.18%	BSI	*351	10.5%
Conifer	none	Chip, small	20.66%	BSI	*268	14.4%
Conifer 9	2/3 bole, 1/3 tops	Ground No No	16.20%	BSI Oregon kiln Air curtain burner	*434 **45 *10,000	13.2% 20% 20%

- No grants and subsidies included in this study
- Forest residues at no-cost
- 8 hours/day x 100 days of operations in a year (But BSI system with drying unit can work all year with addition of feedstocks drying units)
- BSI system can be used to produce biochar at the near-forest and intown locations
- Oregon kiln and Air curtain burner used in-forest locations
- 2 BSI units or 12 Oregon kilns or 1 Air curtain burner for the base case
- 10 years economic life of the project
- 15% Required Returns on Invested Capital (ROIC), 2% inflation for cost and revenue, 6% loan interest rate, loan (40% of total capital investment), etc.
- 40% income tax

Input data: Capital costs

	No of	Fauinment	Description	Purchase	Economic	Salvage
	units	Equipment	Description	price(\$)	life (year)	Value (%)
BSI	1	Tractor	Front-end loader	15,000	10	20
	2	Dryers	Beltomatic 123B	45,000	10	20
	2	Biochar machines	Biochar Solutions, 0.5 Tonnes/hr	340,000	10	20
	2	Gasifier-Gensets	20 kW, PP20GT gasifier	35,000	10	20
	1	Diesel-Genset	Diesel generator, 40 kW	40,000		
			BSI, Total	\$955,000		
Oregon Kiln	12	Kiln	Oregon kiln	850	10	0
	6	Shovel		50	10	0
	1	Chain saw		500	10	0
	2	Propane torch		300	10	0
	2	Skidder	CAT-70hp	32,000	10	20
			Oregon Kiln, Total	\$78,100		
r burner	1	Air curtain burner	S-327	169,000	10	20
	1	Loader	John Deere 2954D	433,000	10	20
Ai			Air burner, Total	\$602,000		

Input data: Operational costs

Descriptions	Units	BSI	Oregon Kiln	Air Burner	Comments	
					Chipping/grinding	
Feedstocks	\$/tonne	10-30	-	-	and transportation	
					for BSI system	
Polootions	\$/sita	11 200	500	1000	Assuming two	
Kelocations	\$/SILE	11,300		1000	relocations in a year	
Repair and	% capital	20%	10%	100/	Straight line	
maintenance	cost			1070	depreciation	
Consumable	Propane	0.54 l/hr	2.03 l/batch	1.6 l/batch		
Consumable	Diesel	-	-	14.3 l/hr		
Deckoging	\$/dry	17/1	-		Transport. Domoto	
Fackaging	tonne	124.1		-	- locations to consumers in town	
Finished good	\$/dry tonne	52.0	-	-		
transportation						
Technician:	\$50.5/hr	1	-	1	Includes 250/ frince	
Loader operator:	\$22.5/hr	-	2	1	honofita	
Non-skilled labor:	\$16.8/hr	2	6	1	denenus	

12

Results: Comparison of biochar MSPs between portable systems at the remote sites (100 days/year working)

Impacts of drying feedstocks and technological improvements on financial performances of BSI system

• Drying units was added to the BSI system (higher feedstocks moisture content and wide operations days, i.e., 300 days/year)

• Double augur added to BSI improved the throughput (22%) and biochar yield (21%).

	Before-finance	Before-	After-
	& tax	tax	tax
MSP (Minimum Selling Price)) 1,244	1,137	1,163
Real IRR	* 14.2%	17.5%	13.0%
Nominal IRF	R 16.5%	19.8%	15.3%
Break-even delivered feedstock cost (\$/green tonne) 10.3	21.0	18.3
Medium-term operating B-E avg. product value (\$/tonne) 860.5	-	-
Short-term operating B-E avg. product value (\$/tonne) 714.6	-	-

BSI: Sensitivity Analysis

Conclusions and future research

A portable system at the near-forest setup can be a potential option to produce biochar from forest biomass.

Estimated Minimum selling prices (MSPs) were \$1060, \$1590, and \$1361/ dry metric tonne biochar for the BSI, Oregon kiln and Air curtain burner respectively.

Major cost components are **capital investment** and **labor**.

➢Biochar MSPs can be reduced by more than half with efficient portable systems and lowering their costs.

➢Further, Biochar MSPs could possibly reduced with current government incentives and credits but this requires further research.

Acknowledgements

- U.S. Department of Energy under the Biomass Research and Development Initiative program: Award Number DE-EE0006297.
- Kelpie Wilson, Wilson Biochar Associates
- Michael Schmitt, Air Burners Inc.
- Dr. Maureen Puettmann, Consortium for Research on Renewable Industrial Materials (CORRIM)

Thank You

Contact: Richard Bergman, PhD Email: <u>rbergman@fs.fed.us</u> Phone: (608) 231-9477