Biochar as a Forest Industry Co-product Is there space for new products in traditional manufacturing operations?

Nate Anderson, Research Forester U.S. Forest Service, Rocky Mountain Research Station

Forest Biomass and the Bioeconomy April 25, 2019 ~ Vancouver, WA

Overview

• What's the supply chain problem? Is biochar part of the solution? 1. Small scale operations 2. Medium & large scale operations 3. Value added operations Summary Discussion

> Unburned slash piles left behind after logging, Fraser National Forest.

Acknowledgements

Co-Authors

Nate Anderson, U.S. Forest Service (RMRS) Rick Bergman, U.S. Forest Service (FPL) Robert Campbell, Univeristy of Montana Woodam Chung, Oregon State University Daren Daugaard, Burning Oak Energy, LLC Hongmei Gu, U.S. Forest Service (FPL) Dongyeob Kim, Seoul National University Dan McCollum, U.S. Forest Service (RMRS) Helen Naughton, University of Montana Debbie Page-Dumroese, USFS (RMRS)

Industry Partners & Advisors

Jonah Levine, Biochar Solutions, Inc. Brad Dunmire, Pueblo Wood Products Daren Daugaard, Cool Planet Energy Systems (now with Burning Oak Energy, LLC) Mark Mathis & Jonah Levine, Confluence Energy Therese Glowacki, Boulder County Parks Brad Worsley, NOVO Biopower Kendric Wait, Eagle Valley Clean Energy Richard Tucker, Tucker Engineering Associates Bradd Thomas, Arvos Group (RBS)

Acknowledgements

Financial and In-kind Support

Our Industry, Agency and NGO Partners

USDA – National Institute of Food and Agriculture (NIFA)

- Bioenergy Alliance Network of the Rockies (BANR, an AFRI-CAP)
- Biomass Research and Development Initiative (BRDI)

USDA – U.S. Forest Service

- Rocky Mountain Research Station
- National Fire Plan
- Woody Biomass, Bioenergy, and Bioproducts Competitive Grant

What's the problem?

Note: Sum of components may not equal 100% because of independent rounding

Source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3 and 10.1, April 2017, preliminary data

What's the problem?

What's the problem?

Smurfit-Stone linerboard plant

- > 1 million tonne pulpwood and hog fuel per year
- Equal to 69 Nexterra gasifiers (@ 14,500 t yr⁻¹)
- 1.0 to 1.5 million tonnes CO₂ (pile burning)
- > 40,000 hectares of treatment

Smurfit-Stone statistics from Morgan 2009, University of Montana 2011, Jones et al. 2010

What's the solution?

What's the solution?

1. Small Scale Operations

FEEDSTOCK

CONVERSION

Mill Residues

Pueblo Wood Products Coniferous live and dead 55 bdt of residues per day Composting operation with local dairy farm

Biochar Solutions, Inc.

\$200,000 system price 5.4 dry tons feedstock per day Modular, low-cost biochar Flexible feedstock 400-700°C two-stage conversion

Biochar

Soil amendment Mine reclamation Forest, agriculture and greenhouse applications

Methods

Industrial Engineering Methods

- Time study: 5 weeks, 25 work days
- Daily shift-level data and samples
 Financial analysis
- Net present value on a 10-yr project

	Feedstock Preparation				
Metric	Grinding	Screening	Loading	Pyrolysis	Biochar bagging
Machine rate (\$ hr ⁻¹)	\$163.81	\$39.78	\$78.86	\$48.07	n/a
Productivity (gt hr-1)	13.61	13.61	54.43	0.156	n/a
Component cost (\$ gt ⁻¹)	\$12.04	\$2.92	\$1.45	\$308.14	\$65.99
Cumulative cost (\$ gt ⁻¹)	\$12.04	→\$14.96	→\$16.41	→\$324.55	→\$390.54
Annual cost:				\$12	6,597

- Annual revenue from biochar:
- Annual net revenue:

• NPV for a 10-year project period: -\$168,955

\$101,013

-\$ 25,554

2. Larger Operations

FEEDSTOCK

CONVERSION

PRODUCTS

Treatment Residues Fuel treatment Beetle salvage Forest restoration

Thermochemical pathways

Combustion heat and power Gasification and pyrolysis Catalytic fuel production Pellet mill

Mulitple products Single outputs Combinations of products: Heat, Power, Biochar, Pellets, Liquid fuel

Methods

- Techno-Economic Analysis (TEA)
- Detailed technical specifications + financial analysis

Inputs

- Engineering specifications
- Production data
- Capital and operating costs
- Other economic variables

Outputs

- Net Present Value (NPV)
- Breakeven Selling Price
- Max Feedstock Cost

B. Biochar + Pellet Scenario

\$40M

3. Value Added Operations

FEEDSTOCK

CONVERSION

PRODUCTS

Logging & Mill Residues Mixed western conifer Screened

Thermochemical Conversion

3 different systems: Confluence Energy (CON) Biochar Solutions, Inc. (BSI) Tucker Engineering Associates (TEA)

Activated Carbon

RBS industrial rotary calciner 3 biochar precursors Steam injection with N purge Temperature: 927 °C 45 min and 65 min trials

Results: BET Surface Area

Results: BET Surface Area

Results Biochar

5000x/5 µm

Activated Carbon

TEA AC-6om

5000x/5 µm

BET SA: 1093 m²g⁻¹

C/FC: 92%/90%

I #: 1218 mg g⁻¹

Results: Iodine Number

Results: Iodine Number

Take Home Messages More profitable operations High conversion efficiency Increased productivity and conversion rate Appropriate scale and system balance Better quality feedstock (e.g. moisture, ash, etc.) Multi-product supply chains Higher and more stable prices for outputs Heat and gas value Biochar product and market development High fuel prices

Public policy (e.g. RINs)

For More Information

Economics and Manufacturing

- Anderson, N.; Bergman, R.; Page-Dumroese, D. 2017. A supply chain approach to biochar systems. Chapter 2 in: *Biochar: A Regional Supply Chain Approach in View of Climate Change Mitigation.* Cambridge, UK: Cambridge University Press. p. 25-45.
- Campbell, R.; Anderson, N. In review. Comprehensive economic evaluation of woody biomass energy from silvicultural fuel treatments. *Journal of Environmental Management*.
- Campbell, R.; Anderson, N.; Daugaard, D.; Naughton, H. 2018. Technoeconomic and policy drivers of project performance for bioenergy alternatives using biomass from beetle-killed trees. *Energies* 11(2): 293, 20 pp.
- Campbell, R.; Anderson, N.; Daugaard, D.; Naughton, H. 2018. Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty. *Applied Energy* 230, pp.330-343.
- Kim, D.; Anderson, N.; Chung, W. 2015. Financial performance of a mobile pyrolysis system used to produce biochar from sawmill residues. *Forest Products Journal* 65(5/6): 189-197.

For More Information

Products and Life Cycle Assessment

- Bergman, R.; Gu, H.; Page-Dumroese, D.; Anderson, N. 2017. Life cycle analysis of biochar. Chapter 3 in: *Biochar: A Regional Supply Chain Approach in View of Climate Change Mitigation.* Cambridge, UK: Cambridge University Press. p. 25-45.
- Gu, H.; Bergman, R.; Anderson, N.; Alanya-Rosenbaum, S. 2018. Life cycle assessment of activated carbon from woody biomass. *Wood and Fiber Science* 50(3): 229-243.
- Jarvis, J.; Page-Dumroese, D.; Anderson, N.; Corilo, Y.; Rodgers, R. 2014. Characterization of fast pyrolysis products generated from several western USA woody species. *Energy & Fuels* 28(10): 6438-6446.
- Anderson, N.; Jones, J.G.; Page-Dumroese, D.; McCollum, D.; Baker, S.; Loeffler, D.; Chung, W. 2013. A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass. *Energies* 6: 164-183.

Contact Information

Nate Anderson, Research Forester Rocky Mountain Research Station Missoula, MT, USA nathaniel.m.anderson@usda.gov (406) 329-2122

QUESTIONS?

Additional slides for questions if needed.

Methods

- Standard machine rate calculations
- Cost(\$ gt⁻¹)=Machine rate(\$ pmh⁻¹)/Productivity(gt pmh⁻¹)
- Feedstock cost: \$0, Biochar revenue: \$2.20 per kilogram
- Other Assumptions: 8 hrs per day, 260 days per year

	Grinding	Screening	Loading	Pyrolysis
Parameter	Tub grinder	Rotary screener	Wheel loader	BSI mobile U5 beta
Purchased price (\$)	\$350,000	\$50,000	\$205,000	\$350,000
PMH (hr yr⁻¹)	1,664	1,664	1,664	2,080
SMH (hr yr ⁻¹)	2,080	2,080	2,080	N/A
Utilization rate (%)	80	80	80	N/A
Machine life (yr)	7	7	7	10
Salvage (% of price)	20	20	20	10
Interest (%)	7	7	7	7
Fuel cost (\$ gal ⁻¹)	\$3.21	\$3.21	\$3.21	N/A
Electricity cost (\$ kWh ⁻¹)	N/A	N/A	N/A	\$0.0677
Hourly labor wage	\$17.89	\$17.89	\$17.89	\$17.89
Labor benefits (%)	35	35	35	35

Shift-level production

Metrics		Work hours (h)	Delay (h)	Productive hours (h)	Feedstock consumption (gt)	Biochar production (t)
Total		167.03	31.35	135.68	21.183	2.993
Shift-	Mean	7.59	1.43	6.17	0.963	0.136
level	Min.	3.75	0.00	2.23	0.219	0.041
	Max	10.23	5.30	9.20	1.433	0.285

Methods

Detailed Inputs

Random variables

Table 4

Summary of inputs with uncertainty distributions.

Variable	Minimum	Base-case	Maximum	Distribution	Source
Discount rate Biofuel price Biochar price Feedstock price Capital investment	4% \$1.54 gal ⁻¹ \$ 71 t ⁻¹ \$0 t ⁻¹ -30%	10% \$2.48 gal ⁻¹ \$1292 t ⁻¹ \$40 t ⁻¹ Scenario-specific	16% \$3.22 gal ⁻¹ \$2,512 t ⁻¹ \$80 t ⁻¹ + 30%	Triangular Triangular Pert Triangular Triangular	Petter and Tyner [12] Table 5 Table 1 U.S. DOE [5] Peters et al. [40]
Biochar conversion rate	22%	27.4%	32%	Triangular	Industry Partners
Biofuel conversion rate	7%	9.3%	11%	Triangular	Industry Partners
Natural gas costs	-54%	Scenario-specific	+54%	Triangular	Described in text
Labor costs	-17.5%	Scenario-specific	+17.5%	Triangular	Described in text
Loan financing	0%	50%	100%	Triangular	Described in text

TEA Input Pricing

Variable	Minimum	Base-Case	Maximum
Pellets price	\$178 t ⁻¹	\$200 t ⁻¹	\$222 t ⁻¹
Biochar price	\$899 t ⁻¹	\$1,834 t ⁻¹	\$2,778 t ⁻¹
Electricity price	\$50 MWh⁻¹	\$100 MWh⁻¹	\$150 MWh ⁻¹
Biofuel price	\$1.59 gal ⁻¹	\$2.36 gal ⁻¹	\$2.96 gal ⁻¹
Heat price	\$2.52 MMBtu ⁻¹	\$5.35 MMBtu ⁻¹	\$10.83 MMBtu ⁻¹
Feedstock price	\$0 t ⁻¹	\$40 t ⁻¹	\$80 t ⁻¹

Assumptions

Financial accounting assumptions.

Parameter	Input Value	Source
Nominal discount rate	7.5%	Petter and Tyner [12]
Inflation rate	2.5%	Petter and Tyner [12]
Loan interest rate	8% APR	Zhao et al. [10]
Loan term	10 years	Zhao et al. [10]
Federal income tax rate	21%	United States Congress [56]
Plant life	20 years	Wright et al. [57]
Depreciation	Variable declining balance (MACRS)	Peters et al. [40]
Construction on a line	7 year period	7h 1 [10]
Construction spending		Zhao et al. [10]
Year 1	8% of FCI and land	
Year 2	60% of FCI	
Year 3	32% of FCI and working capital	

1000x/20 µm

High-vac, SEI PC-DW, 54W, x 1000 1/21/2016 000032 P4-B5I-AC-55-B5I/AEI/TH5I CHYDON; US FOREST SERVICE, RMRS; MKV; 34824 10.21585410

5000x/5 µm

High-vac. SEI PC-std. 10 kV x 5000 1/21/2016 000029 P4-BSI-AC-45; BSI Activated Carbon; US FOREST SERVICE, RMRS; MKV; 34824-10:216884-10

BSI AC-60m BET SA: 847 m²g⁻¹ C/FC: 89%/86% I #: 1040 mg g⁻¹

TEA AC-60m BET SA: 1093 m²g⁻¹ C/FC: 92%/90% I #: 1218 mg g⁻¹ CON AC-60m

CON AC-60m BET SA: 730 m²g⁻¹ C/FC: 94%/85% I #: 951 mg g⁻¹

TEA AC

1000x/20 μm

5000x/5 μm

Coal AC

BET SA: $666 \text{ m}^2\text{g}^{-1}$ C/FC: 86%/87%I #: 847 mg g^{-1}

Coconut AC BET SA: 776 m²g⁻¹ C/FC: 96%/97% I #: 1223 mg g⁻¹

Two commercially available activated carbons marketed for water filtering applications.