Slope Stabilization Methods

Learning Objectives

- Understand driving and resisting components of slope stability and leverage these concepts towards landslide repair.
- Understand common means of repairing and mitigating slope failures.

Slope Stabilization Methods

- Seldom used independently
- Most efficient method is usually some combination of methods
- Drainage is always part of slope stabilization
- Should not be (finally) selected until the subsurface model is complete
- Should be selected based on desired level of performance
- Safety during construction and for the life of the structure should be the first consideration

Stabilizing Approaches

- Decrease driving force
 - Change geometry
 - Lower groundwater
- Increase resisting force
 - Change geometry
 - Lower groundwater
 - Increase shear strength of soil mass
- Surface Erosion Protection
- Soil Improvement
 - Densification
 - Dynamic Compaction
 - Stone columns
 - Vibrocompaction

Stabilizing Approaches

- Soil improvement
 - Consolidation
 - Surcharge loading
 - Drains
 - Soil reinforcement
 - Geosynthetic reinforcement
 - Soil nailing
 - Micropiles
 - Physicochemical Changes
 - Chemical grouting
 - Lime stabilization
 - Cement stabilization

Stabilizing Approaches

- Column Supported Embankments
- Earth retaining systems
 - MSE walls
 - Gravity walls
 - Soldier beams and lagging
 - Soldier beams and shotcrete
 - Tangent pile walls
 - Secant pile walls

Changing Slope Geometry

Increase resisting shear stresses and/or decrease driving stresses.

Stabilizing Methods – Changing Geometry

Unloading

Unload Slide Mass (Reduce Driving Force)

Unloading

Unloading – Light Weight Fill

Foam Blocks that are currently being considered for use are about 1 lb/ft³

Unloading – Light Weight Fill

Buttressing and Shear Keys

Increase shear resistance and increase shear strength.

Increasing shear strength – shear key

Buttressing

Shear Key Construction

Drainage Increasing shear strength.

Stabilization Method – Lower groundwater

が、斜面の下方に厚くあることがわかる。すべり面は、風 化した弱い岩盤とその下の新鮮な岩盤の間に存在する。

Interceptor Drain

Reinforced Slopes and Walls

Recreating a new slope with higher shear strength and controlled drainage.

Soil Reinforcement

- Geosynthetic Reinforced Soil Slopes
- In-situ Soil reinforcement soil nailing
- MSE Walls

Reinforced Soil in a Nutshell

- Soil: Strong in compression, weak in tension
- Reinforcement can carry tensile stresses
- Soil + Reinforcement
 Structure strong under both compression and tension
- Analogous to reinforced concrete

History: Reinforced Soil Structures

3000 B.C. - Mesopotamia "Reeds" placed in horizontal layers used to reinforce soil Great Wall of China – in western desert

How Does Reinforcement Work?

Components of an MSE Wall

Reinforced Soil Slope

Major Advantages *MSEW*

- Simple and rapid construction
- Cost effective
 - Less site preparation
 - Unskilled labor and small equipment
 - Reduced ROW acquisition
 - Less space needed in front during construction
 - No deep foundations
- Technically feasible to heights > 100 ft

RSS

- Cost effective where ROW is available
- Can use lower quality reinforced fill + higher seismic accelerations than MSEW

Potential Disadvantages

- Requires large space behind facing
- Requires select fill (MSEW)
- Requires considerations of reinforcement corrosion/degradation

MSEW / RSS Components

Major Components

- Reinforced fill material (soil)
- Reinforcement
- Facing

Other Components

- Joint Materials
- Leveling Pads
- Coping
- Drainage
- Membrane (salts)

Connections
Traffic Barrier
Ground Improvement (if needed)
Common Facing Systems

- Precast concrete panels (wet cast)
- Modular blocks (dry cast)
- Gabions
- Welded wire mesh
- Cast-in-place
- Timber
- Shotcrete
- Vegetation
- Geosynthetic: wrap around, geocells

Soil Nails and Micropiles Increase resisting stresses.

Micro-Pile Wall Roadway Stabilization

Micro-Pile Wall Slope Stabilization

H Pile and Lagging Tieback Wall

Typical Tieback

H Pile and Shotcrete

Soil Nails

- Soil Nailing an in situ technique for reinforcing, stabilizing and retaining excavations and deep cuts through the introduction of relatively small, closely spaced inclusions (usually steel bars) into a soil mass, the face of which is then locally stabilized.
- The "nails" are passive they required soil movement to mobilize their strength.
- Reinforced earth looks similar, but the fill material in which the reinforcement is placed is fill rather than insitu soil.
- Earth Anchors look similar, but they are active elements tensioned.

Construction Process

Applications

- Slumps, creeping slopes, often used for cuts and fills
- Vertical or near vertical cut construction (i.e. road widening projects)
- Tunnel portals
- Repair existing walls (i.e., MSE)

MSE Remediation

What are the advantages of Soil Nailing?

- Incorporation of temporary support in final structure
- Reduction in cut excavation
- Potential reduction in right-of-way
- Rapid construction
- Large # of nails redundant system
- Cost effective

What are the disadvantages of Soil Nailing?

- Permanent underground easements may be required
- Difficult to construct wall with high groundwater
- Utility conflicts
- Nail capacity may not be economical in highly plastic clays
- Ground displacements
- Durability of shotcrete with respect to freeze thaw
- Soil face must exhibit sufficient stand up time

Soil Nail Design – Failure Modes

Internal Failure Modes

Construction: ~5 feet increments

Good Root Reinforcement

Grout, then...

Happily apply shotcrete

What are common issues/problems with soil nailing?

- Not economical in soils with poor standup time or requiring cased drill holes
- Not economical in cohesive soils with low to medium strength below groundwater table
- May require freeze-thaw consideration in northern climates
- Deformation

Note wetness - freeze impact

Vegetation and Surface Protection

Decreasing erosion potential and oversteepening (decreasing driving forces).

The Role of Vegetation in Slope Stability

Hydrologic Effects

- Foliage intercepts rainfall reducing the rate at which water seeps into the subsurface. Absorption and evaporation reduce the amount that reaches the soil
- 2. Roots and stems increase surface roughness, increasing infiltration
- 3. Roots extract moisture from the soil which is transpired to the atmosphere
- 4. Soil moisture depletion can dessicate the soil and cause cracking that allows increased infiltration

Mechanical Effects

- 5. Roots reinforce the soil ,increasing shear strength
- 6. Tree roots may anchor into underlying rock, supporting the overlying soil
- Weight of trees surcharges the slope. Increasing normal and down-slope force components
- 8. Vegetation exposed to wind transmits dynamic forces into the slope
- 9. Roots bind soil particles at the ground surface and increase surface roughness which reduces erosion.

From Cornforth, 2005

Surface Protection

Surface Treatments

Stabilization Method – Erosion Control

Stabilization Method – Erosion Control

Stabilization Method – Erosion Control

Avoidance

Addressing Toe Erosion of Buttresses

Reinforcement

Earth Retention Structures

Tieback Wall Construction

Rockfall Mitigation

Rock Slope Stabilization

Avoidance

Slope/Catchment Design

No Catchment

Catchment Modification

Scaling

Scaling – Trim Blasting

Slope Mats

Rock Fences

Rock Bolts

Other Mechanical Methods

- Reinforced concrete shear key to prevent loosening of slab at crest.
- Tensioned rock anchors to secure sliding blocks along crest (I_b—bond length; I_f—unbonded length).
- 3) Tied-back wall to prevent sliding on fault zone.
-) Shotcrete to prevent raveling of zone of fractured rock.
- Drain hole, oriented to intersect water-bearing joints, to reduce water pressure within slope.
- Concrete buttress to support rock above cavity.

Questions?