What causes landslides to occur?

Learning Objectives

- Identify key factors that drive landslides.
- Identify factors that contribute to shear strength.
- Identify factors that contribute shear stress.

What Drives Landslides to Occur?

- Geologic (i.e., weak materials, joints, water, etc.)
- Morphological (i.e., erosion, tectonic uplift, etc.)
- Physical (i.e., rainfall, rapid snow melt, etc.)
- Anthropogenic (i.e., excavation, etc.)
- Some processes increase shear stresses.
- Others decrease shear strength.
- Generally, FS is defined as ratio of shear strength to shear stress.

Some of the Typical Culprits...

- Geology.
- Soil Conditions.
- Excavation and Loading (oversteepening/overloading).
- Freeze/Thaw.
- Moisture Cycling.
- Seismicity.
- Water.
- Water.
- Water.

Why does water cause landslides?

- Let's take an example that we all remember from childhood: air hockey.
- When the air is off, the puck doesn't slide as well.
- The reaction force, N, is equal to the weight of the puck.
- Friction is N multiplied by a friction coefficient.

Why does water cause landslides?

- If we turn on air on the table, the reaction force is no longer equal to the weight.
- The normal decreases the by uplift force from air.
- Thus, friction decreases and the puck slides easily.
- This is conceptually the same as "buoyancy."

What about soil and rock?

- The same concepts hold except the puck is a mass of rock/soil at a slope, and instead of air, water is internally causing buoyancy.
- Many slopes are held in place by frictional shear strength. An increase in water levels causes reduced mobilization of frictional strength.
- This can induce failure.

 Let's list the factors that affect the performance of soil slopes and embankments.

What processes increase the shear stress in the ground?

Removal of Support

- Erosion
- Falls, Slides Etc.
- Human Activity

- Increase in Vertical Stress (Overloading)
- Snow
- Lower groundwater
- Material from Slides
- Construction Fill
- Waves

Construction – Removal of Support

- Common for cutslopes.
- Toe is arguably the most critical component of slope for stability (buttressing effect).
- Shear stresses increase in rest of slide plane from removal of support.
- Can stem from erosion/undercutting as well.
- Need to consider short term stability for cuts and construction!

Scour/Erosion

Erosion, Rilling and Ravel

What processes increase the shear stress in the ground?

 Increase in Lateral Pressure

- Rise in the groundwater table
- Water in Cracks
- Freezing of Water in Cracks
- Expansive Soils
- Earthquakes

Alteration of Hydrology and Water

- More water = deeper failure, more runout.
- Less water = shallow failure, less runout.

Earthquakes

State of the second state

What processes reduce the shear strength in

West and the second sec

he ground?

What processes reduce the shear strength in the ground?

Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground? Post-peak creep.

Geologic Considerations

- Groundwater
- Soil Properties and Depositional Processes
- Weathering Processes

Soil Deposition – Alluvial

Alluvial Deposits - transported by running water

 No distinct horizontal strata, unconsolidated, favorable conditions for embankment/slope instability and

landslides.

Soil Deposition - Aeolian

to.

eolian Deposits - transported by wind • Loess - angular silt size particles

 Engineering properties - low density, high strength prior to wetting

Soil Deposition - Glacial

 Glacial Drift - rock debris
 Till - unsorted, unstratified material
 Glaciofluvial deposit - advanced outwash and recessional outwash

Soil Deposition - Marine

Marine Deposits - sands, silts and clays, stratified.
Marine Clays - flocculated
Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive.

Sensitive Clay Failure

Slickensides

- Typical to clays, especially marine clays
- Historical shear zones from prior slope failures
- Predisposed to failure

Faults/Joints

- Typical to rocks, extremely overconsolidated clays
- Macropores tend to store and transport fine materials
- Prime suspect in rockfalls/topples/rockslides

Soil Deposition - Residual

Residual
 Deposits

Soil Deposition – Colluvial

Colluvial Deposits - transported downslope by gravity

Standard Approach to Slope Stability

Learning Objectives

- Identify the process for which slope stability analysis is performed.
- Understand the influence of soil properties on slope stability.
- Understand the influence of slope geometry on slope stability.

Concepts of Slope Stability

- Slope stability is the primary means of quantitatively assessing the level of stability of a slope, done using a Factor of Safety.
- Soil tends to fail in shear, these concepts directly govern slope failures.
- Soil has shear strength, conventionally defined as friction and cohesion.
- At a given shear surface, there is shear stress, induced by:
 - The gravitational mass of the soil.
 - Water pressures.
 - Overloading, seismicity, etc.
- Generally, slope stability is a comparison of available shear strength to shear stress:

Factor of Safety = $FS = \frac{Available Shear Strength}{Mobilized Shear Stress}$

- 1. Identify the kinematics of the problem
 - Kinematics the study of the geometry of motion without regard for what caused it.
 - For slope stability, the question is:
 - What is the likely initial geometry of motion that a potential slope failure would exhibit?
 - We may want to consider more than one possible failure.

Rotational

Combination??

- 2. Construct a free body diagram of the rigid body of concern
 - Isolate the Slide Mass.
 - Indentify and show all external forces.
 - Include body forces (weight and if an earthquake force is to be included, inertia).

3. Evaluate the forces on the free body diagram

- Be Careful some forces cannot be evaluated directly.
- Weight of the body in 2-dimensions, this will be the area times the appropriate unit weight.
- Boundary Neutral Forces only present if a portion of the body is below the local GWT.
 - Compute the boundary pore pressure distribution.
 - Integrate the distribution to obtain a resultant force.
- Solve for other forces using equilibrium equations.
 - Usually requires simplifying assumptions.
 - Usually requires solution of simultaneous equations.

4. Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized.

- 5. Analyze other similar free bodies in order to determine the worst case situation.
 - If failure surface is absolutely known this will not be required.
 - Failure surface is rarely "absolutely known".
 - The exception is for existing landslides (forensics).
 - To find the failure geometry of an existing landslide, we need to perform a field investigation and monitoring.

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

- 1. Identify when total stress or effective stress should be used in a slope stability analysis
- 2. Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

- External effects: Driving forces increase while shearing resistance is unaltered
- Internal effects: Failure occurs without any change in external conditions or earthquake

Recall: Examples of causes of instability

• External effects:

Steepening or heightening of slope by man-made excavation, river erosion

Internal effects:

Increase in PWP within the slope

Implications to Engineered Slopes

To increase stability:

- Reduce driving forces (e.g., use lightweight fill, flatter slopes)
- Increase shear resistance (e.g., reinforce fill material; preload soft foundation)
- Provide adequate long-term drainage to minimize potential decrease in shear strength

Excavation Angle (degree)

S

Excavation Angle (degree)

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

Slope failures in homogenous material tends be circular:

- 1. Slide wholly on slope.
- 2. Surface of rupture intersects toe of slope when steep.

Slide Controlled by Dipping Seams

Deepseated Failure Limited by Bedrock

Deepseated Failure Partially Controlled by Berm

Composite Failure Controlled by Soft Seam of Clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide within Fill in a Cut and Fill Operation

Retrogressive Failure of Fill from Bottom Up

Sliding Geometry: Tips

- If changes in strength of soil layers is gradual, circular failure is likely
- Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (e.g. bedrock, strong strata).
- Identification of potential failure mechanisms requires careful evaluation

Questions?