Background

Cedar in Grasslands

- Eastern redcedar, Juniperus virginiana
- Native to Nebraska
- Grassland fires in the past limited cedar to topographically rough areas
- Fire suppression and tree planting have allowed invasion onto rangelands and grasslands

Benefits

- Windbreaks
- o Bushy, fast growing, drought-tolerant
- Aesthetics
- Woodland game/hunting

Negatives

- Ecological Impacts
- 0 Will shift dominant ecological system from grassland to woodland
- o Species affected
 - Birds
- Small mammals
- Insects
- Native Grasses

• Economic Impacts

- o Reduced livestock production
 - 43% of NE land is used for livestock
 - Beef and veal exports totaled \$1.2 billion in 2017
- o K-12 education funding
- Increased cost for wildfire management

- Encourage landowners to manage their land for a reason or in a way that they may not have considered
 - o Financial and logistical support
- o Different management types are supported
- o Mechanical removal is most common
- o Nebraska Game and Parks promotes fire
- Goal is to manage cedar on a landscape scale o This has not been assessed o Most management is done on <100 acres

Types of Removal				
Mechanical	Chemical	Prescribed Fire		
Expensive	Can be expensive	Cost-effective		
Labor intensive	Difficult to apply	Legal restrictions		
Common		Logistic restrictions		
		Social restrictions		

The Effects of Scale on the Management of **Private Rangelands and Grasslands through Cost-**Share Programs

Brittany Dueker^{1,2}, Dirac Twidwell¹, and Craig R. Allen^{2,3}

¹Agronomy and Horticulture, University of Nebraska, Lincoln, NE; ²Nebraska Cooperative Fish and Wildlife Research Unit; ³School of Natural Resources, University of Nebraska, Lincoln, NE

Objectives

- To determine how the incentive structure of cost-share programs to manage eastern redcedar affects the scale at which management happens
- Determine attributes which can be used to adapt cost-share programs to meet conservation goals of grassland-scale management

Research Questions

- What is the maximum amount of land rural Nebraska landowners are willing to manage for cedar with cost-share programs? • How do cost-share incentives change this maximum amount?
 - Is the maximum amount of land enough to prevent and/or reverse cedar invasion?
 - If so, is the incentive structure needed to do so feasible with current or projected cost-share funding?

Twitter: @bdueker @TwidwellLab @NECFWRU

Contact Information

Brittany Dueker bdueker@huskers.unl.edu

Cedar Spread from a Windbreak

1999

For more information on cedar: https://cedarliteracy.unl.edu

Methods

Study Sites

- o Southeast and
- o Verdigris-Bazile
- o Elkhorn River Headwaters

Mail Survey

Analysis

0 86% of respondents indicated they have cedar on their land o Only 21% of respondents have participated in a cost-share program to remove cedar

Multi-Model Inference

ost-Share History e + Amount of La coregion Amount of Land Ow Years Managed

ost-Share History mount of Land Ow istory (Any) ost-Share History (coregion + Amount mount of Land Ow

Coregion + Cost-Sh Cost-Share History coregion + Amount and + Cost-Share H ost-Share History (A oregion Amount of Land Owned

variables

o Loess Canyons Sandstone Prairies

ebraska Natural Legacy Project

o 2262 surveys sent o 8 pages, 36 questions o 420 survey received back

o Multi-model inference

• We used logistic regression models with demographic variables from survey responses to predict response variables that are directly related to scale of management

• To assess relative model support we used AIC

Preliminary Results

Summary Statistics

: Willingness to Ch	ange Mana	gement Based on Neighb	oor's Management (N=301)	
	К	AICc	Weight	
	9	964.83	0.64	
	6	866.4	0.29	
.ny)	5	871.28	0.03	
nd Owned	6	871.49	0.02	
	5	874.11	0.01	
	4	875.5	0.00	
ned	5	875.83	0.00	
	5	877.40	0.00	
W /•11•			····· (·······························	
ponse: willingness	to Join a C	ost-Share Program to Ke	emove Ledar $(N=521)$	
	K 10	AICC	Weight	
1 1		886.19	0.98	
edar)	5	894.68	0.01	
ned + Cost-Share	6	900.122	0.00	
.ny)	5	909.85	0.00	
of Land Owned	8	916.77	0.00	
ned	5	918.58	0.00	
	7	932.45	0.00	
	4	933.43	0.00	
n	TT CD.			
Kesponse:	Use of Fire	e for Cedar Management	(N=330)	
	<u> </u>	AICc	Weight	
	- 7	290.23	0.94	
are History (Cedar)	5	295.68	0.06	
Gedar)	2	305.22	0.00	
of Land Owned	5	334.14	0.00	
istory (Any)	3	343.55	0.00	
ny)	2	345.21	0.00	

• The global model performed the best for all three response

350.61

356.28

360.57

• Future direction will be to determine if the predictors with meaningful coefficients in the global models affect the scale at which landowners will manage land

Acknowledgements

0.00

0.00