

Turbidity and suspended sediments after road improvements and forest harvest in streams of the TWS

Ivan Arismendi

Department of Fisheries and Wildlife, Oregon State University

Ivan.Arismendi@oregonstate.edu

Co-Authors: Jeremiah D Groom, Sherri L Johnson, Maryanne Reiter, Liz Dent, Alba Argerich & Arne E Skaugset

@AGU PUBLICATIONS

Water Resources Research

RESEARCH ARTICLE

10.1002/2016WR020198

Key Points:

- Forestry can occur with limited inputs of fine sediment to streams
- Change thresholds provide a biological context to test results
- Turbidity and flow are not consistent predictors of suspended sediment

Supporting Information:

Supporting Information S1

Suspended sediment and turbidity after road construction/ improvement and forest harvest in streams of the Trask River Watershed Study, Oregon

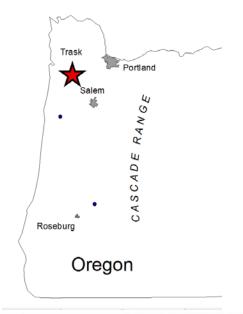
Ivan Arismendi¹, Jeremiah D. Groom², Maryanne Reiter³, Sherri L. Johnson⁴, Liz Dent⁵, Mark Meleason⁵, Alba Argerich⁶, and Arne E. Skaugset⁶

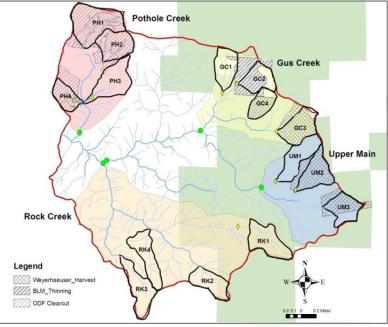
¹Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA, ²Department of Statistics, Oregon State University, Corvallis, Oregon, USA, ³Weyerhaeuser Co., Springfield, Oregon, USA, ⁴U.S. Forest Service Pacific Northwest Research Station, Corvallis, Oregon, USA, ⁵Oregon Department of Forestry, Salem, Oregon, USA, ⁶Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, Oregon, USA

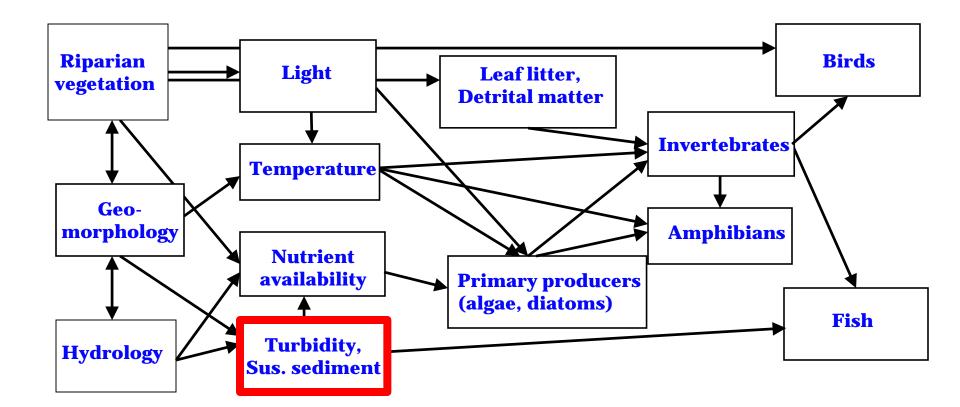
Arismendi et al. (2017) Water Resour. Res., 53, 6763–6783, doi:10.1002/2016WR020198

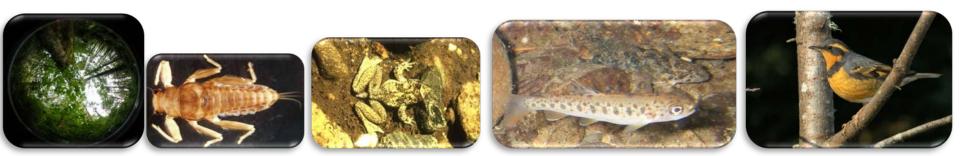
Trask River Watershed Study

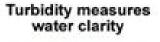
Dr. Sherri Johnson, *PNW Research*, *USFS* **Dr. Bob Bilby**, Weyerhaeuser Company Dr. Judy Li, OSU Fisheries and Wildlife Dr. Jason Dunham. USGS FRESC **Dr. Michael Adams**. USGS FRESC **Dr. Joan Hagar**, USGS FRESC **Dr. Arne Skaugset**, OSU College of Forestry **Liz Dent**, Oregon Dept of Forestry **Maryanne Reiter**, Weyerhaeuser Company **Doug Bateman**, OSU College of Forestry Linda Ashkenas. OSU Fisheries and Wildlife Nate Chelgren, USGS FRESC **Alex Irving,** OSU College of Forestry Dr. Brooke Penaluna, OSU Fisheries and Wildlife **Bill Gerth**. OSU Fisheries and Wildlife Janel Sobota, OSU Fisheries and Wildlife **Amy Simmons**, OSU College of Forestry **Dr. Jeremy Groom**, Oregon Dept of Forestry Dr. Ivan Arismendi, OSU Fisheries and Wildlife



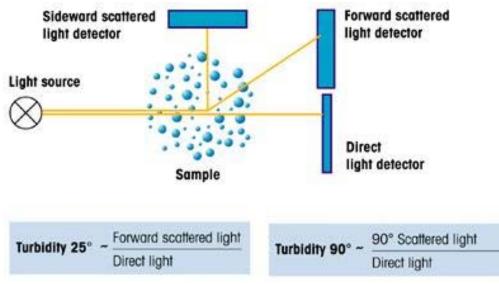

Weverhaeuser

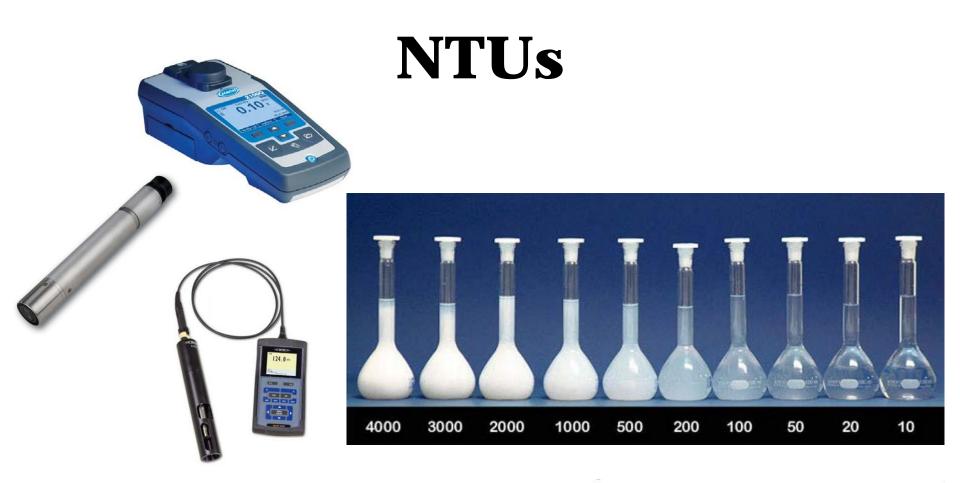



- The Trask Study takes a long term and multi-disciplinary approach to quantify the effects of forest harvest on the physical, chemical and biological characteristics of headwater streams
- The Trask Study design uses a nested paired watershed approach with both treatment and control basins. The reference watershed is left unharvested. Three treatment watersheds are harvested using contemporary best management practices (BMP)


Trask River Watershed Study

Turbidity

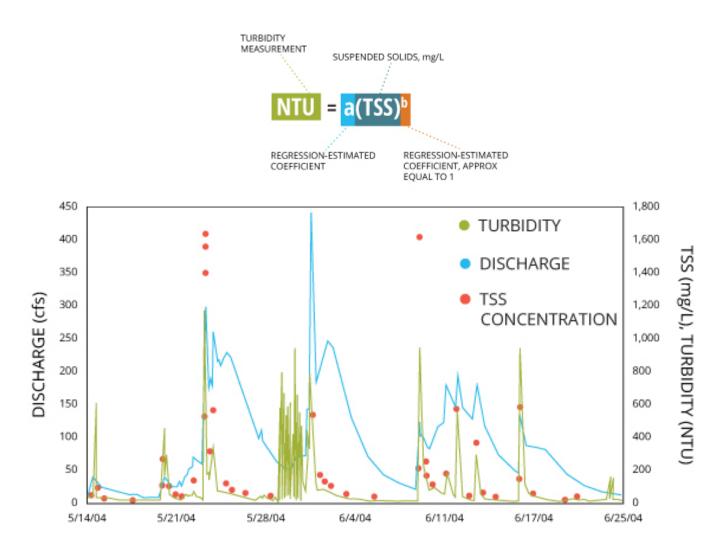

 Turbidity is the cloudiness of a fluid caused by suspended individual particles that are generally invisible to the naked eye



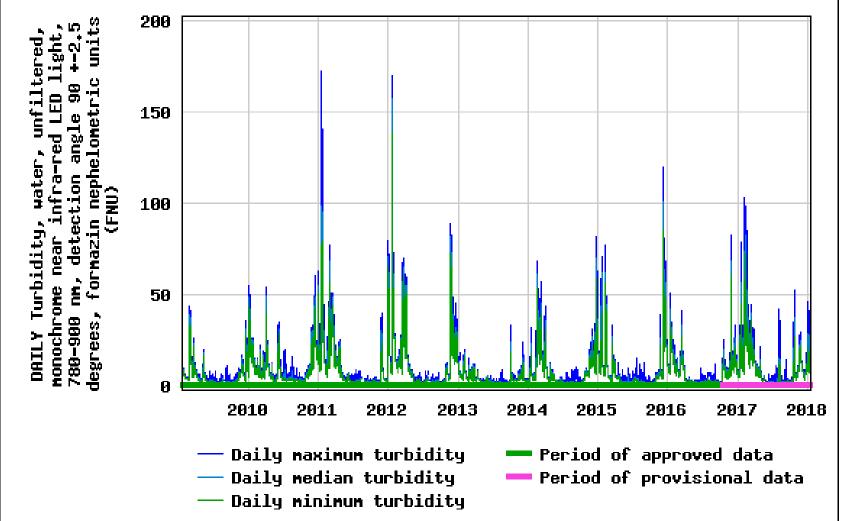
Turbidity measurements

• Nephelometric Turbidity Unit (**NTU**) measures scattered light at 90 degrees from the incident white light beam (EPA method 180.1)

https://or.water.usgs.gov/grapher/fnu.html

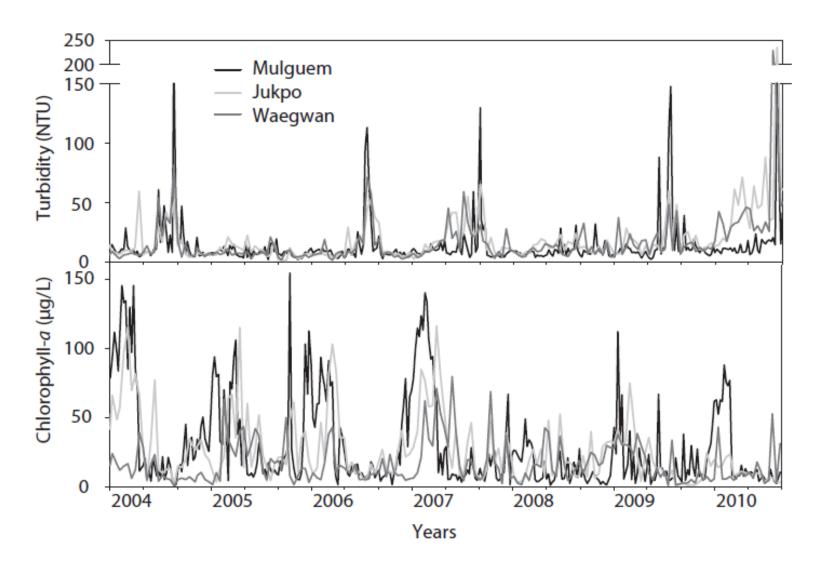


Turbidity & suspended sediments



http://www.fondriest.com/environmental-measurements/equipment/measuring-water-quality/turbidity-sensors-meters-and-methods/

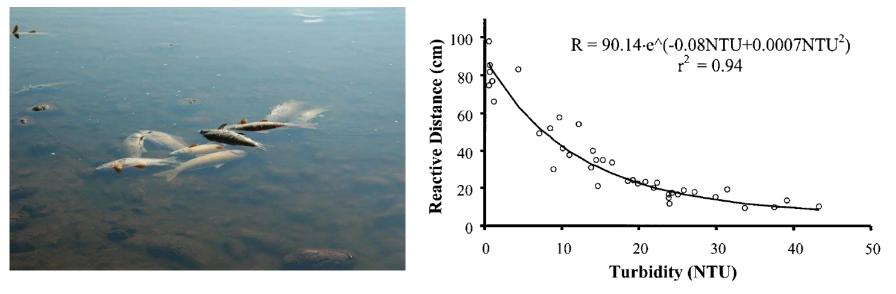
Turbidity regimes


≊USGS

USGS 14211720 WILLAMETTE RIVER AT PORTLAND, OR

Impacts on freshwaters

Organism	Level of detection	Effects	Author
Stream functio			
J	U	Decrease in algal photosynthetic efficiency	Izaguirre et al. (2009)
Primary production (PP)	Turbidity = 5 NTU	Decline (3-13%)	Lloyd et al. (1987)
	Turbidity >25 NTU	Decline (13-50%)	Lloyd et al. (1987)
Primary produ	cers		
Periphyton & macrophytes		Decrease in periphyton biomass (chl a) and % cover of macrophytes	Parkhill and Gulliver (2002)
Algal community	Addition: 6 g/L of clay (<0.5 mm diameter)	Change in algal community composition	Izaguirre et al. (2009)

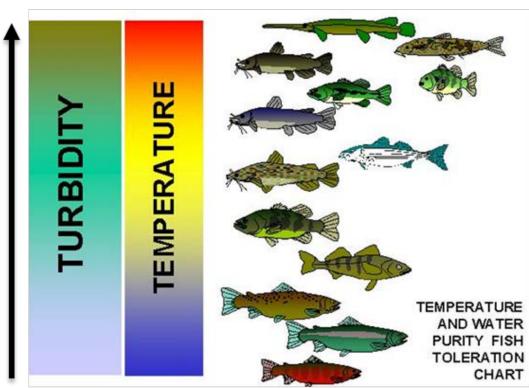

Fig. 5. Time series changes in turbidity and chlorophyll-a in the Nakdong River. NTU, nephelometric turbidity units.

Yoon Kim et al. (2011)

Fish				
Coho Salmon	Turbidity >70 NTU	Avoidance of the zones with high turbidity	Bisson and Bilby (1982)	
Community	Turbidity >4000 NTU	Decreased prey consumption among species not adapted to highly turbid channels	Bonner and Wilde (2002)	
	Turbidity >50 NTU, 100 NTU, and 400 NTU	Dramatic reduction of drift prey captures at 50 NTUs. Benthic feeding success of both species at 100 NTU was at least 70% of their feeding performance in clear water (i.e., 0 NTU), whereas neither species fed at 400 NTU	Harvey and White (2008)	
Rainbow Trout and Coho Salmon	Turbidity >22 NTU for 11 days	55% reduction of fry length and 45% reduction in weight	Sigler, Bjornn, and Everest (1984)	
Rainbow Trout	Turbidity >15 NTU and >30 NTU	Reactive distance 80% and 45% at 15 and 30 NTU, respectively, of normal reactive distances. No effect on pursuit speed.	Barrett et al. (1992)	
Rainbow Trout	Turbidity >60 NTU	Reactive distance changes from 30 to 10 cm during a 60 NTU pulse. Lower feeding during 60 NTU pulse.	Berg and Northcote (1985)	

Effects of turbidity and fine sediments

• Fish: physical damage due to gill abrasion; diminished predatory abilities because of reduced reactive distance to prey



Sweka and Hartman (2001)

Environmental regimes and fish assemblages

http://www.combat-fishing.com/streamecology.html

Historically, roads deliver fine sediments to streams affecting instream biota

- Increased fine sediment

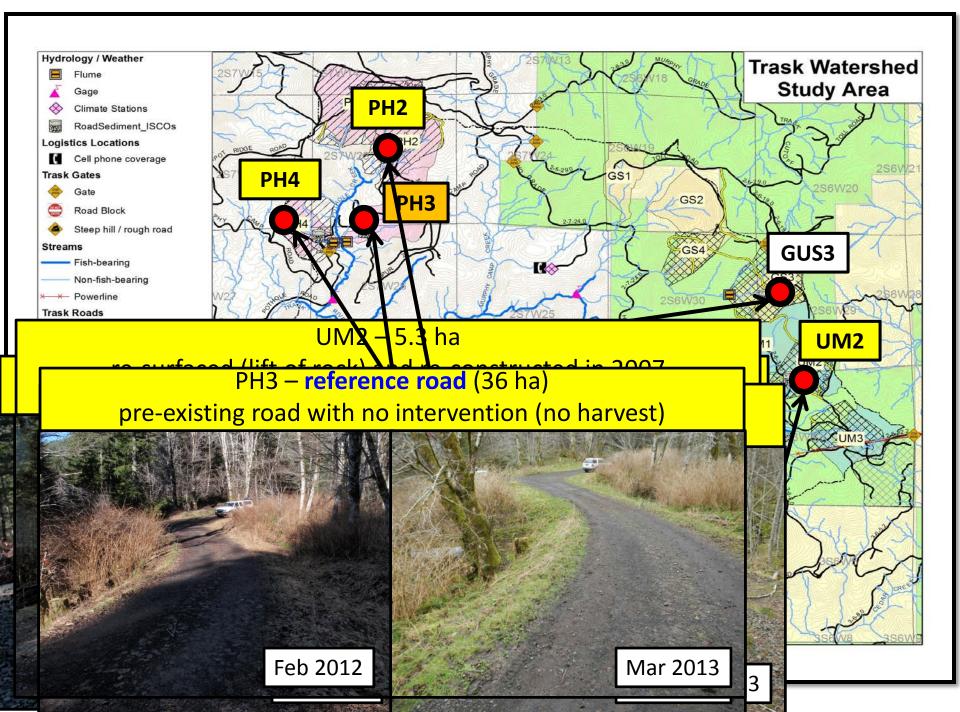
 (<2mm) and turbidity from
 erosion of road surfaces (Brown and
 Krygier, 1971; Reid and Dunne, 1984; Bilby et al., 1989;
 Lane and Sheridan, 2002; Gomi et al., 2005)
- Increases in fine sediment and turbidity contributed to declines in populations and negative cascade effects at ecosystem level (Cederholm et al., 1981; Wood and Armitage, 1997; Henley et al., 2000)

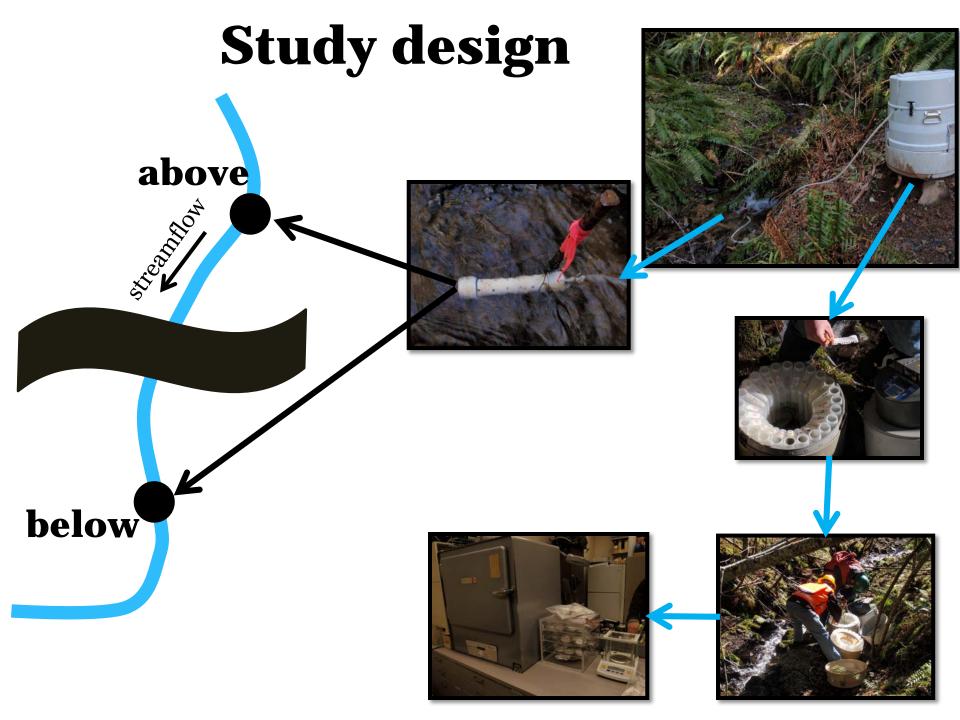
Wind River, WA (1910)

http://www.ohs.org/education/oregonhistory/index.cfm

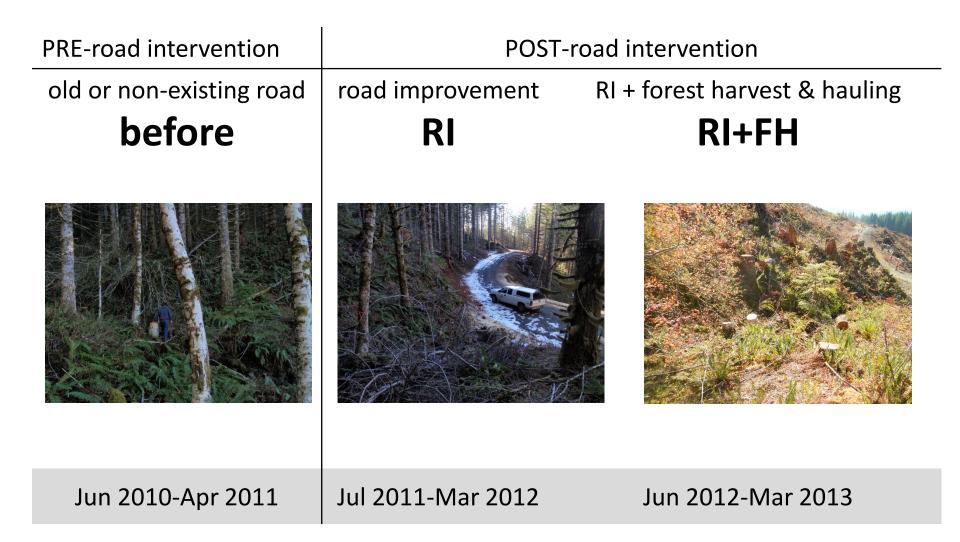
Do contemporary forest practices deliver fine sediments to streams?

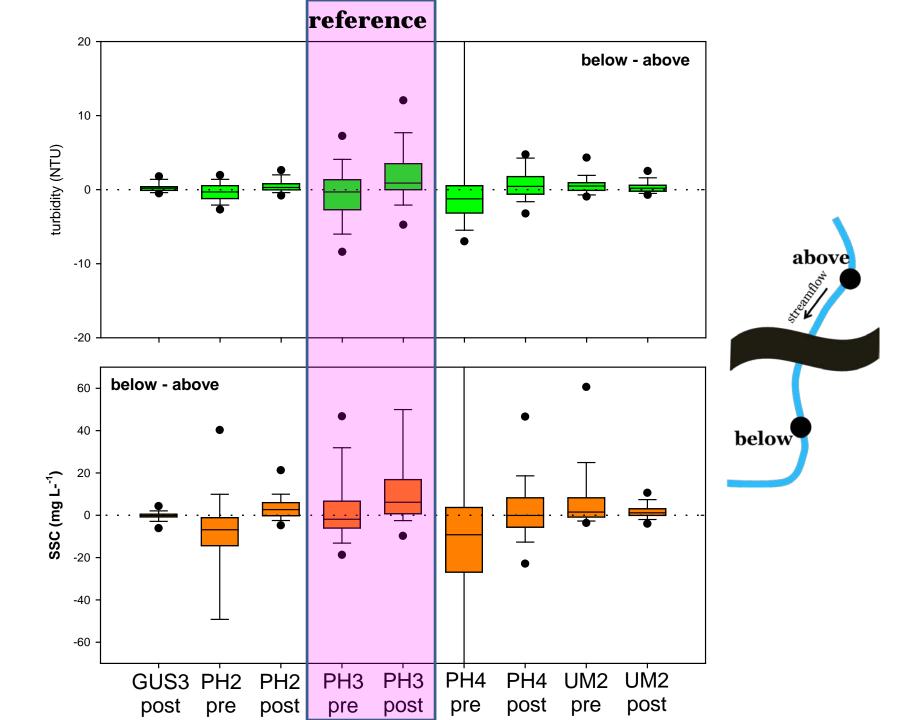
 Previous studies provide foundation for current forest practices designed to minimize <u>negative impacts</u>. But, we cannot make generalizations from previous studies


Trask Watershed Study, Pothole



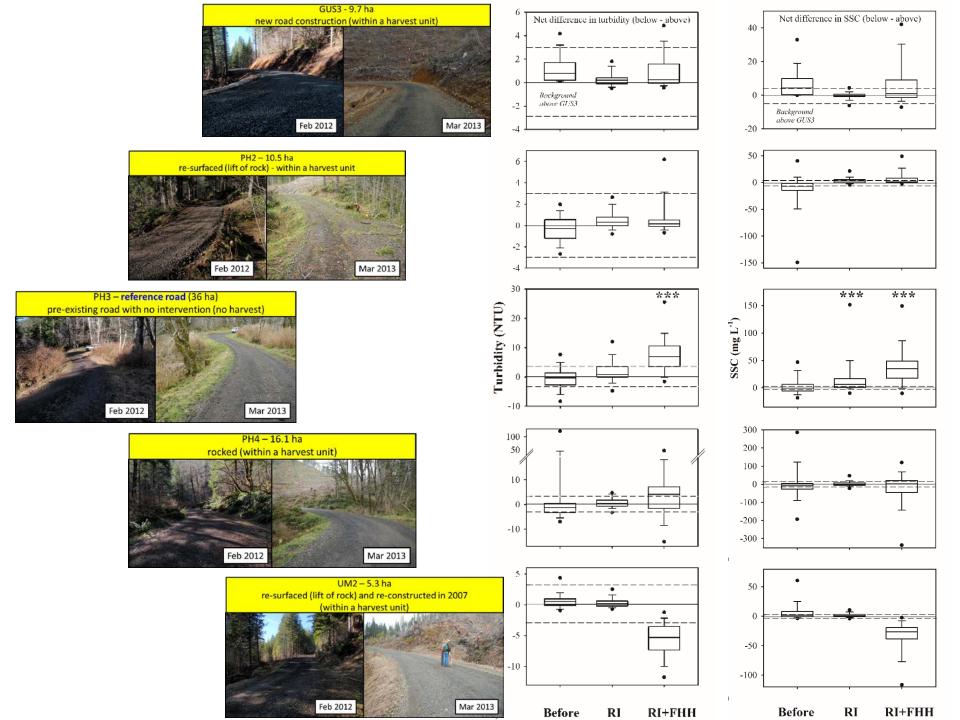
Questions


Do contemporary forest practices increase turbidity and suspended sediment concentrations <u>at road</u> <u>crossings</u> in headwater streams?


Do turbidity and suspended sediment concentrations <u>respond</u> <u>consistently</u> across road crossings?

Timeline

Biological relevance?


Is below-above <= threshold "C"?

				P-values			
metric	time period	site (below-above)	C = 0.2	C = 1	C = 3	C = 5	C = 10
turbidity (NTU)	before	GUS3	NA	NA	NA	NA	NA
		PH2	1	1	1	1	1
		reference PH3 ¹	0.973	1	1	1	1
		PH4	1	1	1	1	1
		UM2	0.002	1	1	1	1
	RI	GUS3	0.726	1	1	1	1
		PH2	< 0.001	1	1	1	1
		reference PH3 ¹	< 0.001	0.068	1	1	1
		PH4	0.031	0.977	1	1	1
		UM2	0.296	1	1	1	1
	RI+FHH	GUS3	0.002	0.974	1	1	1
		PH2	0.287	1.000	1	1	1
		reference PH3 ¹	< 0.001	< 0.001	< 0.001	< 0.001	1
		PH4	0.001	0.008	0.234	0.865	1
		UM2	1	1	1	1	1

Is below-above <= threshold "C"?

P-values

	time	site (below-					
metric	period	above)	$\mathbf{C} = 0.2$	C = 1	C = 3	C = 5	C = 10
SSC (mg L ⁻¹)	Before	GUS3	NA	NA	NA	NA	NA
		PH2	1	1	1	1	1
		reference PH3 ¹	0.697	0.846	0.974	0.997	1
		PH4	1	1	1	1	1
		UM2	< 0.001	0.005	0.363	0.923	1
	RI	GUS3	0.999	1	1	1	1
		PH2	< 0.001	< 0.001	0.617	1	1
		reference PH3 ¹	< 0.001	< 0.001	< 0.001	< 0.001	0.819
		PH4	0.301	0.576	0.952	0.999	1
		UM2	0.000	0.049	1	1.000	1
	RI+FHH	GUS3	0.001	0.032	0.573	0.963	1
		PH2	< 0.001	< 0.001	0.336	0.981	1
		reference PH3 ¹	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
		PH4	0.765	0.779	0.813	0.855	0.936
		UM2	1	1	1	1	1

turbidity at PH3 – reference road

no forest management

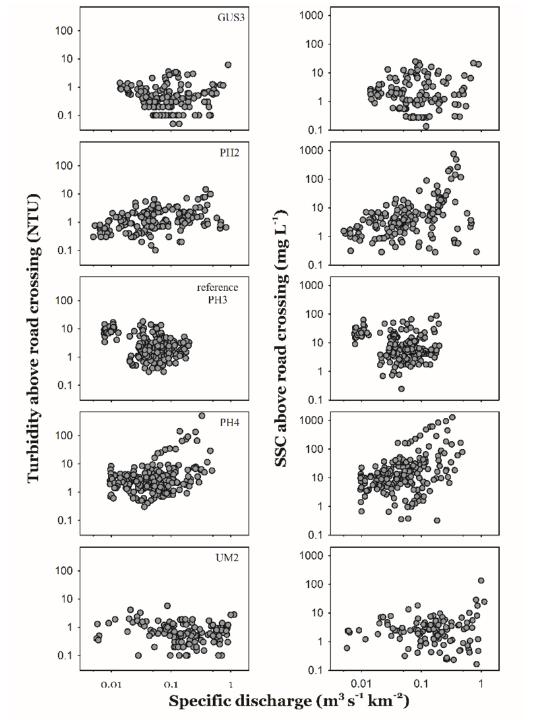
above

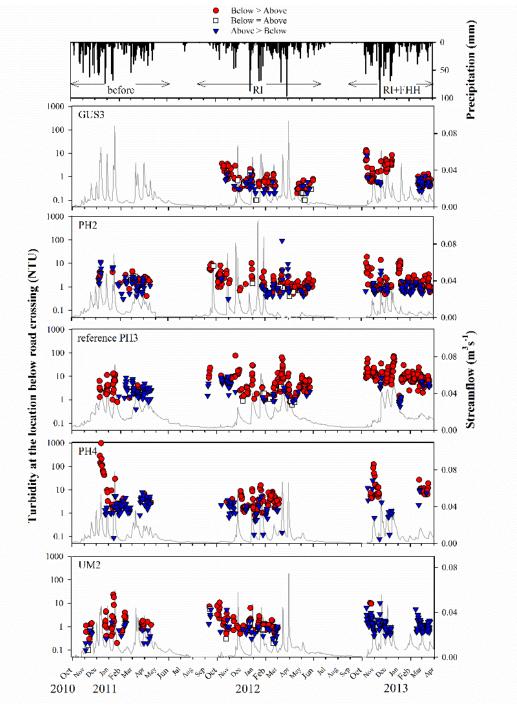
below

background 12 - 4

Take home messages

- <u>Minimal increases</u> in sediment influx from road crossings in these forested streams under contemporary forest harvest
- <u>Local disturbances</u> can be very important to fine sediment influx in headwater streams
- Future regulations may consider the <u>natural</u> <u>variability</u> of sediment influx to streams within and among watersheds
- Multifaceted metrics of fine sediment influx <u>regimes</u> may be more informative than single central tendency statistics


Acknowledgements:


Funded: OFIC (Oregon Forest Industries Council), NCASI (National Council for Air and Stream Improvement, Inc.), and Weyerhaeuser Co.

Indirect support: ODF and Weyerhaeuser Co.

- Field assistance: Jon Laine, Michael Thompson, Andrew Yost, Andrew Herstrom, Doug Bateman, Ian Hayes & Alex Irving
- Additional database: Peter James, Amy Simmons & Dave Hockman-Wert
- Discussions: Tom Dunne, Fred Swanson & Brooke Penaluna

Ivan.Arismendi@oregonstate.edu

