Estimation of volume and products that can be obtained from individual stems using consumer grade cameras

Bogdan Strimbu

Stem Measurements

Ground estimation issues

- Time consuming
- Inaccurate (at the best first log)
 - Form factor (usually Girard)
 - Rarely measured in daily practice guestimation
- Lack precision (half log)

Tree Volume in Board Feet (International ¼) Number of useable 16-foot logs

Tree Diameter	1	1.5	2	2.5	3	3.5	4	4.5	5
10	36	48	59	66	73				
11	46	61	76	86	96				
12	56	74	92	106	120	128	137		
13	67	90	112	130	147	158	168		
14	78	105	132	153	174	187	200		
15	92	124	156	182	208	225	242		
16	106	143	180	210	241	263	285		
17	121	164	206	242	278	304	330		

Objective

- Main: Develop a procedure that estimate tree products that is fast, accurate, precise, and inexpensive.
 - Focus on fast and accurate
- Secondary: prove that computer vision techniques provide fast and accurate estimates of stem attributes → dbh

Structure from Motion

 Range imaging technique for estimating 3D objects from multiple 2D images

Procedure

- 1. Record images
- 2. Create point cloud
- 3. Calibrate point cloud
- 4. Execute measurements
- 5. Corrections

Species & Location

Loblolly pine

From first thinning to rotation age

Location

Input

• Nikon 3200- 24.2 Mpixels - \$700

Photogrammetric Point Cloud

PPC calibration

PPC Measurements

Bias

Bias=1.72 cm

Bias @ height
$$h = d_{ppc} - d_{ground}$$

Bias reduction

 $bias_{correction} = error @ dbh + Calibration_{error} \times Relative Height$

Calibration error is close to bias

Diameters

Bias reduction (2)

After reduction: accuracy 1.5 mm

Height at which difference < 10% is ≥ 10 m

Problems

1. Slow

2. Needs bias corrections for outside diameter

Automatic measurements

- Complex combination of algorithms
 - Existing
 - Newly developed
- Compute INSIDE BARK diameter at any height
- Matlab

Automation Results

Automation Results

Automation Results

Issues

Results

• Computation time: aprox. 250 sec

Measurements every 4 inch

Inside bark diameter

Accuracy: more than 95%

Depends on rendering process

