The Ecology and Management of Plant Invasions: The Role of Restoration

Dean Pearson and Yvette Ortega USFS Rocky Mountain Research Station, Missoula, MT

Ecology & Management of Invasive Weeds

Disturbance

Invasion Value Native system

All species Perennial forbs Perennial grasses Annual forbs

Ortega and Pearson 2005

Quantifying and ranking invader impacts on plants

		Invasiveness			Impact				Other invaders		
Species	Туре	R	A	Rank (score)	E	F	Р	Rank (score)	Slope	F	Р
Bromus tectorum	AG	461	14.9	1 (6861)	-0.39	129.3	< 0.001	1 (2676)	-0.50	147.9	< 0.001
Centaurea stoebe [†]	PF	233	6.7	2 (1555)	-0.72	30.5	< 0.001	2 (1120)	-0.43	252.1	< 0.001
Euphorbia esula [†]	PF	87	12.8	3 (1111)	-0.53	37.5	< 0.001	3 (589)	-0.43	229.1	< 0.001
Potentilla recta [†]	PF	148	6.3	4 (937)	-0.50	19.1	< 0.001	4 (468)	-0.43	242.5	< 0.001
Veronica verna	AF	180	3.1	6 (564)	-0.57	9.4	0.002	5 (322)	-0.43	244.5	< 0.001
Linaria dalmatica†	PF	84	3.8	9 (316)	-0.75	14.4	< 0.001	6 (237)	-0.43	250.2	< 0.001
Poa pratensis	PG	38	9.4	8 (358)	-0.64	19.3	< 0.001	7 (229)	-0.43	244.9	< 0.001
Alyssum alyssoides	AF	114	1.7	16 (188)	-1.17	3.9	0.05	8 (220)	-0.44	256.8	< 0.001
P. compressa	PG	48	4.8	12 (229)	-0.79	20.1	< 0.001	9 (181)	-0.43	242.3	< 0.001
Hypericum perforatum [†]	PF	47	7.8	7 (367)	-0.44	8.3	0.004	10 (162)	-0.44	253.3	< 0.001
Verbascum blattaria	BF	40	6.7	10 (268)	-0.59	6.4	0.01	11 (158)	-0.43	246.5	< 0.001
P. bulbosa	PF	74	7.7	5 (568)	-0.06	0.2	0.68	(0)	-0.45	267.7	< 0.001
Arenaria serpyllifolia	AF	114	2.0	11 (232)	-0.16	0.3	0.61	(0)	-0.44	254.2	< 0.001
Tragopogon dubius	BF	166	1.4	13 (228)	-0.44	0.9	0.35	(0)	-0.44	256.1	< 0.001
Agrostis interrupta	AG	100	2.1	14 (212)	0.14	0.2	0.69	(0)	-0.44	260.1	< 0.001
B. japonicus	AG	88	2.3	15 (204)	-0.06	0.1	0.83	(0)	-0.44	258.2	< 0.001
Erodium cicutarium	AF	68	2.7	17 (186)	-0.44	1.3	0.26	(0)	-0.44	248.4	< 0.001
Sisymbrium altissimum	ABF	69	1.9	18 (132)	-0.74	2.8	0.10	(0)	-0.43	240.7	< 0.001
Taraxacum officinale	PF	81	2.3	19 (108)	-0.91	1.3	0.26	(0)	-0.44	252.6	< 0.001
Myosotis micrantha	AF	151	0.7	20 (100)	-2.20	2.0	0.16	(0)	-0.43	244.2	< 0.001
Holosteum umbellatum	AF	158	0.6	21 (97)	0.69	0.3	0.59	(0)	-0.44	255.1	< 0.001
Lactuca serriola	ABF	77	1.0	22 (78)	-1.09	0.9	0.35	(0)	-0.44	248.4	< 0.001
Filago arvensis	AF	72	0.5	23 (39)	-1.01	0.1	0.73	(0)	-0.44	255.6	< 0.001
S. loeselii	ABF	34	1.0	24 (36)	-1.69	1.2	0.28	(0)	-0.44	249.6	< 0.001
Camelina microcarpa	AF	42	0.5	25 (23)	-7.12	2.0	0.16	(0)	-0.43	252.1	< 0.001

TABLE 1. Components of exotic species invasiveness and impact based on surveys of $n = 620 \text{ 1-m}^2$ plots in 31 grasslands across westcentral Montana, USA.

Pearson et al. 2016a

- Reduced nest success
- Disruption of singing

Ortega et al. 2006, 2014

CA-AV

Pearson et al. 2012

Human medicine analogy

Pearson and Ortega 2009

Side effects

- Nausea
- Insomnia
- Diarrhea
- Chest palpitations
- Dry mouth
- Fatigue
- Drowsiness
- Hallucinations
- Suicidal thoughts or behavior

Hippocratic Oath

Hippocratic Oath

Fig. 3. Predicted population growth rate vs. spraying return interval and persistence time in soil. 'None' refers to no herbicide use. (A) 65% increase in fecundity during the release period; (B) 5% increase in survival and 65% increase in fecundity during the release period.

Secondary invasion the bane of weed management

Of 168 studies, 38 quantified system response
Most studies suppressed target (96%)
Primary response to control is secondary invasion
89% of secondary invaders noxious/invasive
Secondary invasion correlated with invader control

Ecology & Management of Invasive Weeds

Conclusions

eate invasion transation we are not in cansas any more sectoration we are not in ansagement effect not ruby slippers – they all have sight be and rarely get us back to Kansas be agement requires understanding the in and management tools to maximize ded outcomes and minimize side

For references

- Google scholar Dean Pearson
- dpearson@fs.fed.us