Identification & Management of White Pine Blister Rust

Holly Kearns

USDA Forest Service Forest Health Protection Sandy, Oregon

What is White Pine Blister Rust?

- A rust fungus
 - Cronartium ribicola
- Complex life cycle
 - Obligate parasite
 - 5 spore stages
 - Requires 2 hosts to complete life cycle
 - 5-needled pines
 - gooseberries/currants (Ribes)
 - · Pedicularis & Castilleja

Spermatia

summer - early fall
Spermatia exuded
in droplets along
margin of canker

Management Options

- Leave the best as leave trees
- Plant genetically improved stock
- Prune
- Evaluate site hazard
- Manipulation of alternate host (Ribes)
- Monitor plantations

Save the best looking trees

- Trees with no (or very few cankers), dense, rapidly growing crowns
- Potential for genetic resistance
- Improved genetic diversity

Why Prune?

- Infections only occur on green needles
- Live branches close to the ground are at highest risk of infection
 - shady, cool, and moist
- Pruning removes infections before they reach the stem & removes the lower needles as infection sites

Why Prune?

- Pruning does not change genetic resistance of trees, but can help maintain white pine as a functioning component in forests
 - important in mixed conifer stands due to white pine's tolerance to native root diseases
- If done correctly...

Pruning Results

- Nearly doubled survival over 30 years
- Improved numbers of trees without infection
- Prevents stand transition to less desirable species
- Higher quality volume production

Evaluating Stands for Pruning

- Stand Factors to consider
 - Management objectives
 - *Amount of White pine (TPA)
 - *Level of rust infection
 - Average age/height of WP
 - Species composition
 - Other treatments such as thinning

Determine Level of Infection Area Name: Stand No: Location: T__R_ Plots Clean Safe Pro Clean S

Pruning Guidelines

- Max. 50% of crown
- Pruning height
 - -8 feet, but less than 50%
- Canker distance out
 - More than 6" for surveys
 - More than 4" for contracts
 - Cankers >24" are usually not lethal
- Remove ALL branches

Evaluating Site Hazard

- Estimates the suitability of the site for development of the rust
- Can be based on:
 - Ribes abundance
 - Nearby infection levels
 - Site factors

Site Hazard Rating

- Based on survey of 41 plantations in N. Idaho
- Highest infection occurred on:
 - higher elevations (>3500')
 - steeper slopes (>15%)
 - Ribes present
 - tall brush (>4.5')
 - broadcast burned
 - cedar-wild ginger habitat type
- These relationships need further testing

Ribes Management

- Ribes prefer sunlight
 - Are enhanced by activities that open stands
 - Logging
 - Low intensity fire
- Seed may survive 200 years in duff
- Will die out in shade

Photos by Maria Newcomb

Monitoring is crucial

- Infection may vary widely and won't know changes if not monitored
- The best way to make decisions regarding pruning and thinning

The Bottom Line

- Rust-resistant white pine consistently perform better than natural white pine
- Currently no exact predictor of rust site hazard
- Infection levels vary
 - Do not plant pure stands of rust-resistant white pine
- Pruning has doubled survival in young natural stands
- You can't just "plant it and forget it" = Monitoring, Monitoring, Monitoring!

Management Guide available online:

http://www.fs.usda.gov/Internet/FSE_DOCU MENTS/stelprdb5415080.pdf

