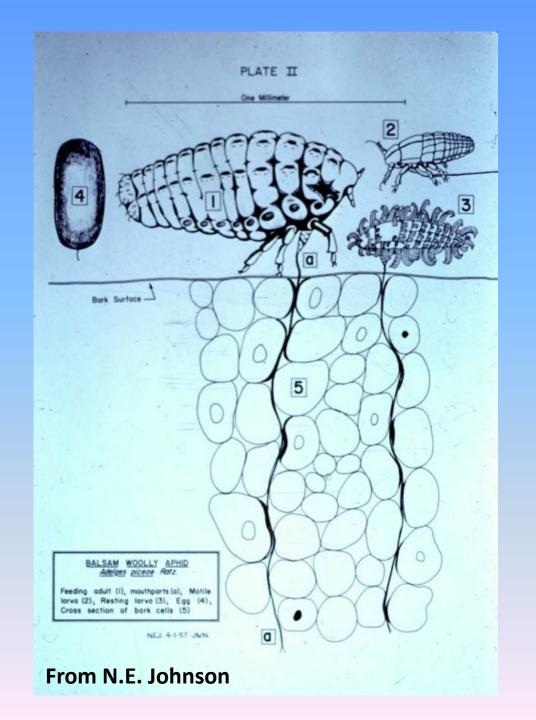


Glenn Kohler, Forest Entomologist
Washington Department of Natural Resources

Hosts

- Only known on true fir (*Abies*) in North America
- Native to Europe
 where spruces
 (*Picea*) are alternate
 hosts required for
 sexual reproduction
- European hosts can support high pops, but not severely damaged

USDA Forest Service, Northern and Intermountain Region, USDA Forest Service, Bugwood.org


Hosts

- Pacific NW: subalpine fir, lowland Pacific silver fir & grand fir
- Noble fir and white fir more resistant in forest settings
- <u>East NA:</u> balsam firs & Fraser fir
- All sizes of hosts can be infested

Identification

- Aphid-like insect
 with waxy
 secretion or
 "wool" covering
 body
- Found on bark of bole or twigs (not on needles)
- Round/oval shape, 1-2 mm, purple to brown color

North Carolina Forest Service , Bugwood.org

Ladd Livingston, Idaho Department of Lands, Bugwood.org

Identification

- No wings on adults in NA, all females reproducing by parthenogenesis
- Wool ovisacs may contain amber colored eggs
- Individuals don't move from feeding site except first nymph stage after hatching (crawler)

Ronald S. Kelley, Vermont Department of Forests, Parks and Recreation, Bugwood.org

USDA Forest Service - Ashville , USDA Forest Service, Bugwood.org

Adelgids in the west on hosts other than Abies

Hemlock woolly adelgid

gall adelgid (Douglas-fir and spruce)

Tom Coleman, USDA Forest Service, Bugwood.org

Petr Kapitola, Central Institute for Supervising and Testing in Agriculture, Bugwood.org

UGA3040051

Pineus species adelgids (commonly on white pine and lodgepole)

Life cycle

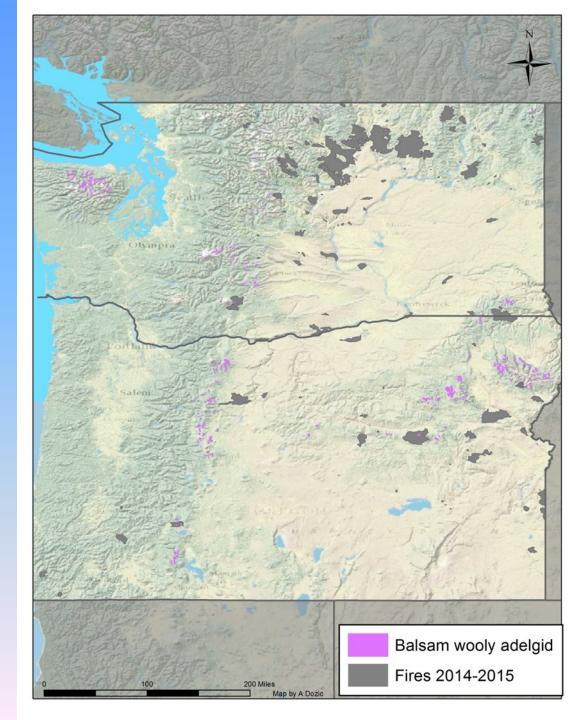
Scott Tunnock, USDA Forest Service, Bugwood.org

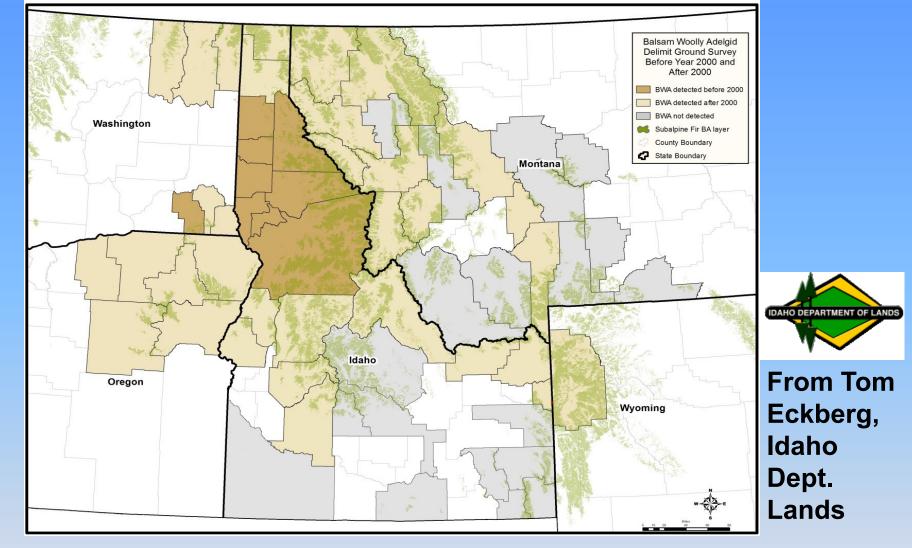
- Egg, crawler, neosistens, sistentes, adult
- Look for adults and eggs in summer and fall
- Only neosistens (fall generation) can survive winter at high elevation
- Two generations per year at higher elevations in West (up to 3-4 in lowlands)

Distribution

From Ragenovich and Mitchell (2006), Forest Insect and Disease Leaflet 118.

- Introduced to NA from Europe around 1900 on east coast, likely brought in on nursery stock
- 1928 found in CA and 1952 in OR & WA
- Transcontinental distribution major pest of Abies in East and West
- Extreme cold may limit range in northern latitudes

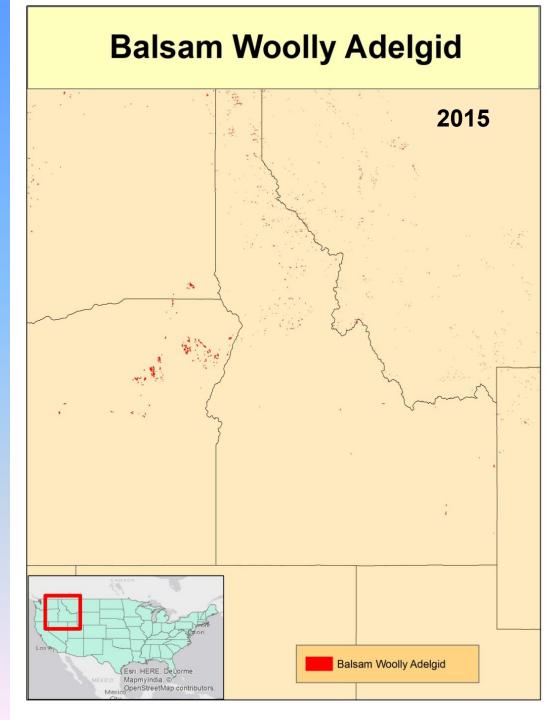

2015 OR & WA detections of BWA damage in aerial survey


- Widespread mortalityin Cascades by 1950s-1960s
- •2015: 61,000 ac. (OR);
- 19,600 ac. (WA)
- •2014: 77,500 ac. (OR);
- 35,400 ac. (WA)

Ten-year averages:

109,000 ac. (OR);

35,000 ac. (WA)


- Range expanding in PNW
- Since adults don't fly in North America, they depend on wind and wildlife (& people) for dispersal

2015 ID & MT detections of BWA damage in aerial survey

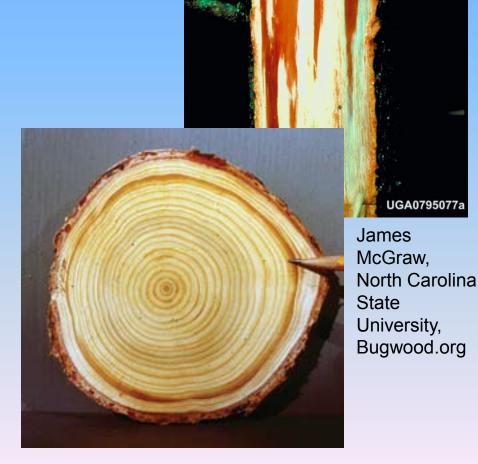
- Found in Idaho in 1983Spread thru much
 - of Idaho, mostly subalpine fir
- About 15,000 acres in Idaho in 2015;
- 25,000 acres in 2014

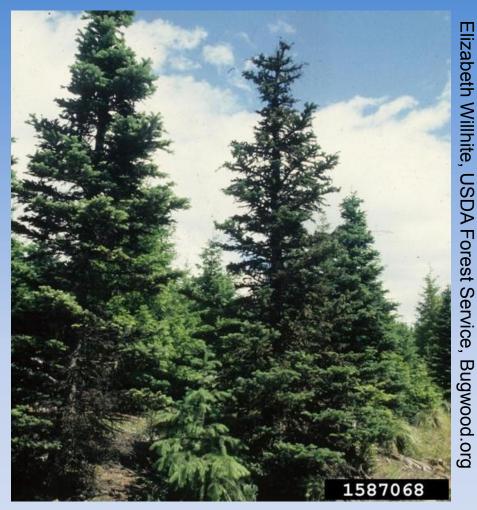
From Tom Eckberg, Idaho Dept. Lands

Damage and Symptoms

• Twig Infection:

- "Gouting": swelling buds and branch nodes
- Chronic infections that last years
- stunts growth,
 inhibits cone
 production, and
 causes old foliage loss
- Collapsed upper crown with "fiddle" shape





Ladd Livingston, Idaho Department of Lands, Bugwood.org

Damage and Symptoms

- Stem Infection:
 - BWA saliva induces abnormal growth in sapwood
 - Looks like
 compression wood
 (called "Rotholtz" or
 red wood); inhibits
 water movement
 - Causes crown decline (brown/red foliage) and tree mortality within a few years

Crown defoliation and stunting in Pacific silver fir, typical of twig infection

Brown/red foliage indicating mortality from stem infection (check for bark beetles)

- All female populations can have explosive growth
- New introductions may lead to high mortality levels within a few years (more stem infections)
- Local loss of hosts due to lack of resistance in population and reduced cone production

- Changes significant in high elevation ecosystems along with whitebark pine mortality
- Areas with older introductions (or factors that limit BWA populations) may have lower current mortality rates, ongoing chronic damage (more twig infections), and some trees showing tolerance

- In general: More stem infections on best sites and more twig infections on poor sites
- Surviving trees with twig infections often have crown dieback, top-kill, reduced growth, and are more susceptible to secondary attacks by pests (examples: bark beetles, higher mortality after budworm defoliation)

Grand fir in riparian area with BWA, budworm defoliation, and Indian paint fungus

- In general: hosts more susceptible in moist areas and lower elevations
- May inhibit pioneer subalpine fir in disturbed areas
- Chronic sub-lethal infections of grand fir in lowlands inhibits reproduction

• <u>Direct control:</u>

- Pesticides not practical in the forest situations, but effective on ornamentals or high-value trees
- Topical sprays work best on crawler stage
- Systemics are very effective against sucking insects

Great Smoky Mountains National Park Resource Management, USDI National Park Service, Bugwood.org

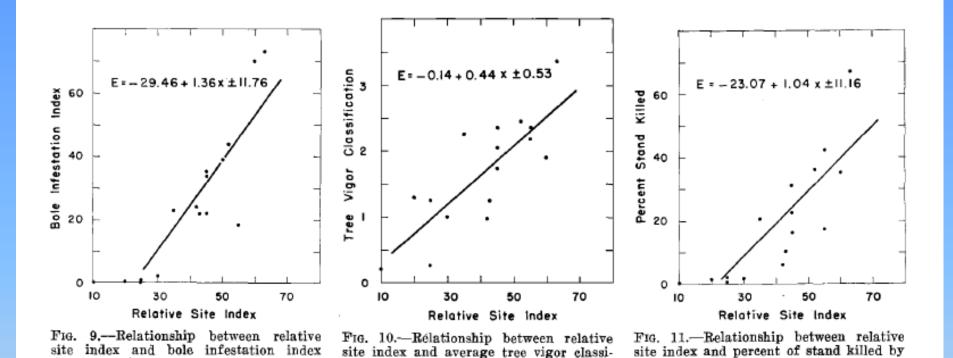
USDA Forest Service - Ashville , USDA Forest Service, Bugwood.org

- Natural controls:
 - Adelgids have no parasitoids
 - Biological control programs
 in 1950s & 60s introduced
 25 predator species in west
 US and Canada
 - 8 species established including specialists:
 Derodontid beetle,
 Cecidomyiid midges, and
 Chamaemyiid silver flies

Gabriella Zilahi-Balogh, Agriculture and Agri-Food Canada, Bugwood.org

– Native and introduced predators are abundant but not effective in controlling BWA or reducing damage. Why not?

- Natural controls:
 - Winter mortality at north latitudes and high elevations


Host tolerance:

- Noble and white fir,
 European firs tolerant unless off-site
- Susceptible hosts may have individuals that show tolerance in infested areas
- Some infected trees have wound response that blocks
 BWA feeding, new growth still susceptible

Robert L. Anderson, USDA Forest Service, Bugwood.org

- Some stand conditions may affect susceptibility
 - Elevation: grand fir very susceptible below 1,000 ft with fewer stem infections at higher elev; Pacific silver fir rarely damaged above 3,000 ft; heavy damage to SAF at low elev and less at treeline
 - Site quality: silver fir and SAF tend to have more damage on good sites, so thinning and release of advanced regen may increase BWA damage
 - Silver fir near sea level on Olympic Peninsula not damaged (unknown why)
 - Risk & hazard rating systems use elevation, soil and site conditions (may be different for each host)

Study of Pacific silver fir in SW Washington. Johnson, Mitchell, and Wright (1963) Journal of Forestry.

fleation (r = 0.799).

the balsam woolly aphid (r = 0.826).

(r = 0.876).

- Silvicultural practices:
 - Very challenging to manage in forests (often chronic with permanent BWA populations)
 - Host specificity allows for species manipulation in some stands
 - If thinning, select against symptomatic trees and favor non-hosts (as leave trees or planting) or host trees that appear tolerant
 - If appropriate for site, favor noble fir and Pacific silver fir (above 3,000 feet)

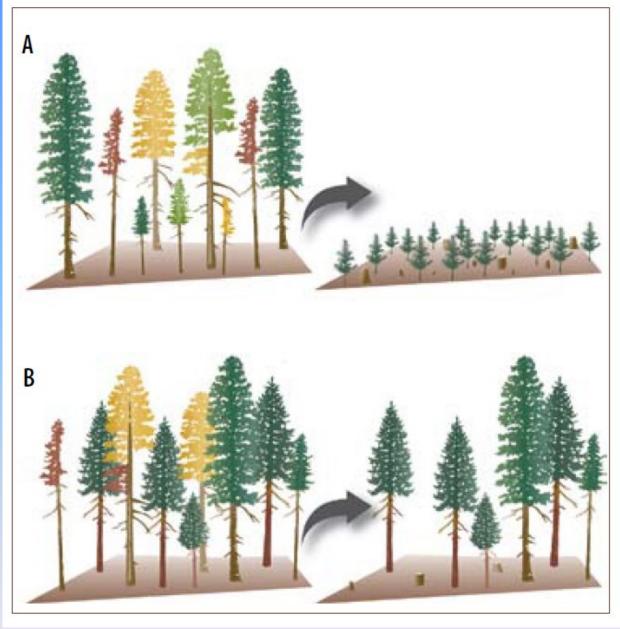


Figure 4-1. Balsam woolly adelgid management:

A) In infested stands dominated by true fir, harvest damaged and high-risk species and convert to nonhost species such as larch, pine, and Douglas-fir;

B) In mixed-species stands, remove damaged and high-risk hosts.

Illustration: Gretchen Bracher.

From Shaw, Oester, and Filip (2009) Managing Insects and Diseases of Oregon Conifers. Oregon State Univ Extension.