


Internet: Search for "High-Resolution Bill Murray Image"

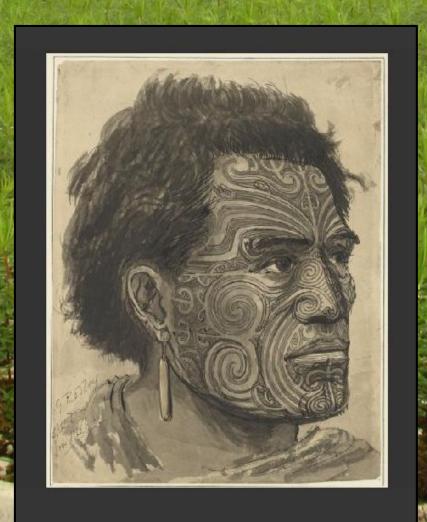
The expected result (yet surprisingly blurry)

Internet: Search for "High-Resolution Bill Murray Image"

The expected result (yet surprisingly blurry)

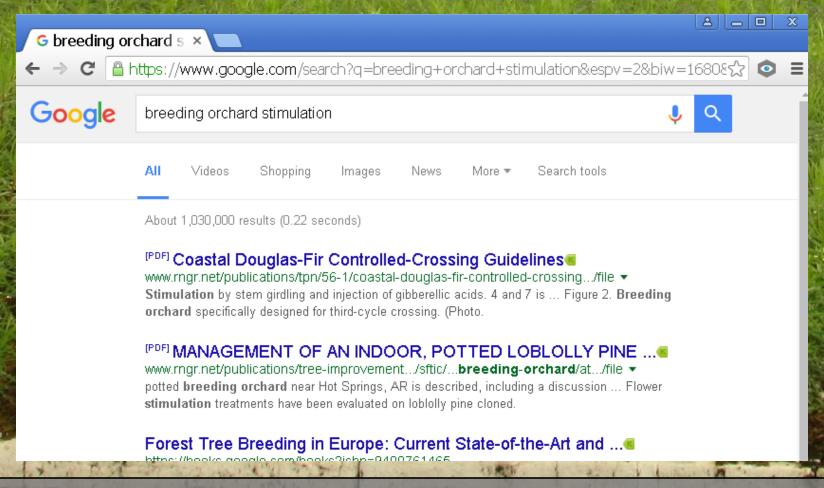
An unexpected result (on a thigh?)

Explore That Path: Run New Search for "Face Tattoo"



Expected Result

Explore That Path: Run New Search for "Face Tattoo"

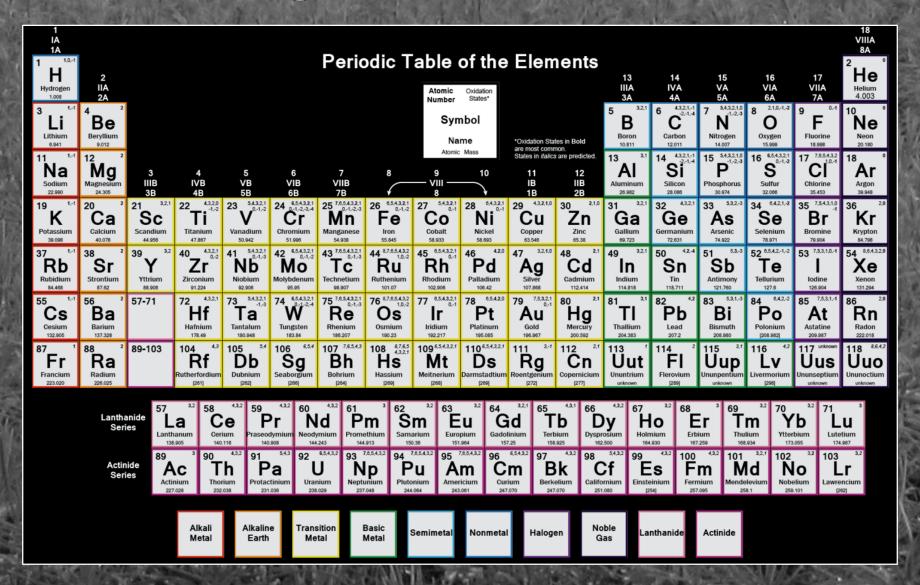


Expected Result

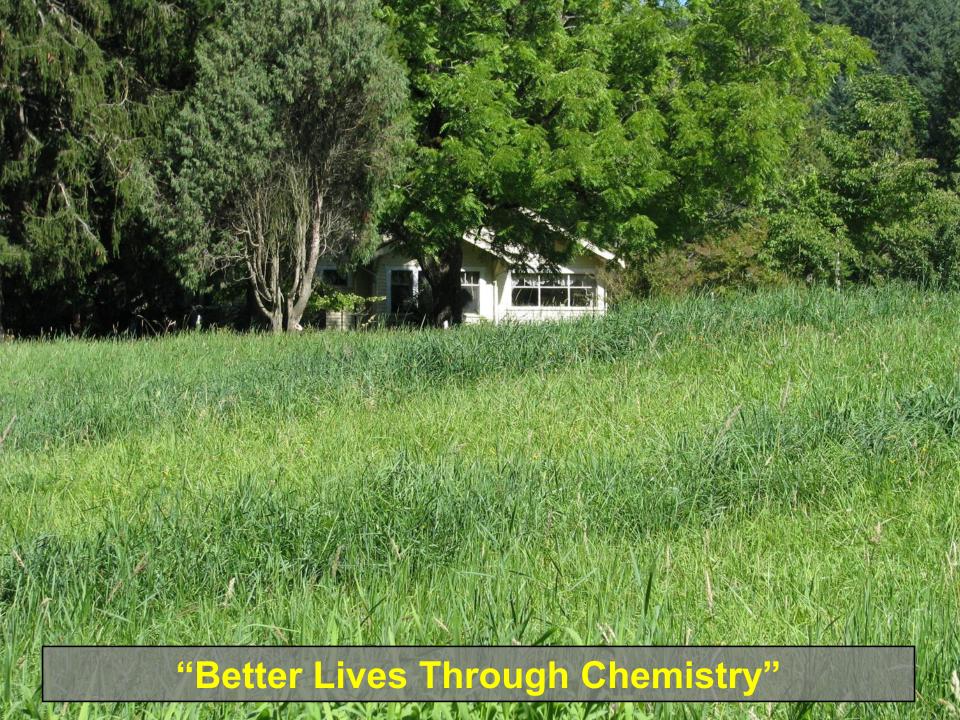
"Oh Yeah" Result

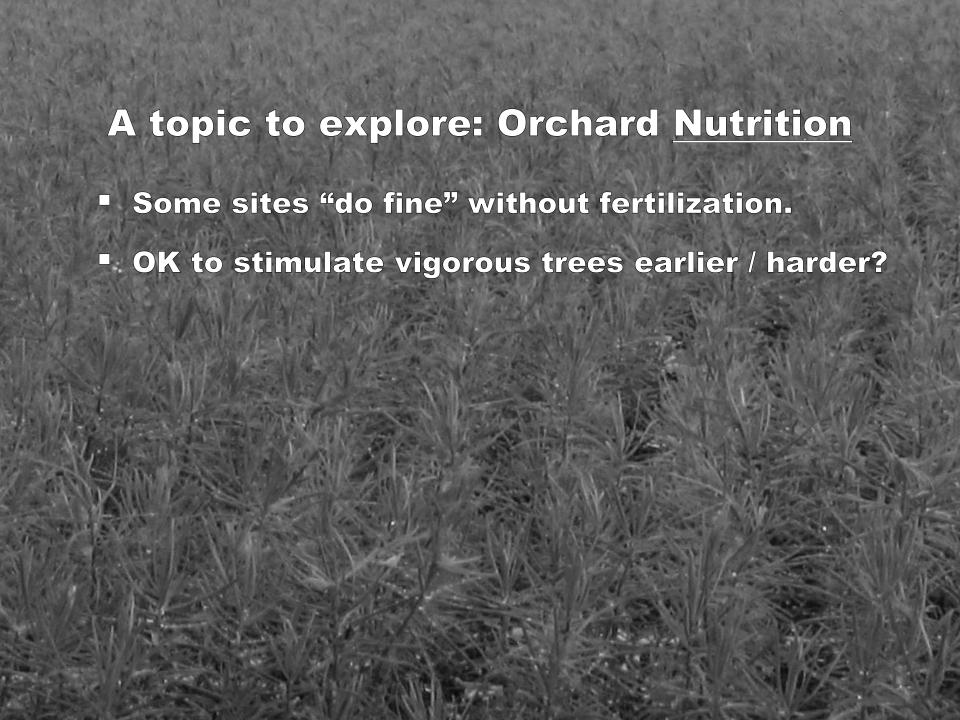
Best to not search for "Breeding Orchard Stimulation" from your office computer!

"About 1,030,000 results" (>4,600 being videos) ???


An example of a topic that's already been explored: Orchard Stocking Levels

- Tighter if generations are short?
- Wider for Douglas-fir than noble fir?
- Need for pruning? Costs & logistics?
- Ease of applying herbicides / insecticides?
- Cone harvesting:
 - Expensive if rows are crowded?
 - Inexpensive if trees are also topped?


Another topic that we understand pretty well: Orchard Irrigation

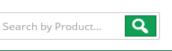

- Some sites "do fine" without it.
- Some sites / species indeed don't need it.
- Drip irrigation:
 - Low water usage.
 - Need good filtration.
 - Need for coyote control.
- Fixed-set:
 - Adequate water supply?
 - Relatively low maintenance.
 - Watering grass as well as trees.

A subject that we haven't thought about for a while!

- Some sites "do fine" without fertilization.
- OK to stimulate vigorous trees earlier / harder?
- Greater nutrient demands with heavy crops?

- Some sites "do fine" without fertilization.
- OK to stimulate vigorous trees earlier / harder?
- Greater nutrient demands with heavy crops?
- Benefits of larger seed?

A topic to explore: Orchard Nutrition


- Some sites "do fine" without fertilization.
- OK to stimulate vigorous trees earlier / harder?
- Greater nutrient demands with heavy crops?
- Benefits of larger seed?
- Generic vs. custom blends?

Grange Specials | Grange Gift Cards | Store Locator

Grange Knows | Community Events | Customer Reviews | Help

Farm & Ranch

Lawn & Garden

Pet Country

Ground Fertilizer Triple 16 50 lb

Clothing & Footwear

Wild Bird

Outdoors

Specialty Food

Rogue Brand

Bargain Barn

FREE SHIPPING* ON ORDERS \$99+ WHEN YOU USE COUPON CODE: 99SHIP *Limited time. See details.

Advanced Search	
Any words	•
Go	
MY CART	

f y p G+

Rogue Fertilizer (16-16-16-06) Pasture & Hay Ground Fertilizer Triple 16 50 lb

食食食食食

Grange Co-op - Lawn & Garden - Fertilizers - Rogue Brand Fertilizer - Rogue Fertilizer (16-16-16-06) Pasture & Hay

No reviews for this product. Please login to place a review.

\$17.99

SKU: 501616

Enter Quantity

Add to Cart

Quantity Available: 409

Login

View cart | Checkout

MY ACCOUNT

Example of a Custom Blend Used in 2016:

Sometimes Need Dialogue with Lab(s)

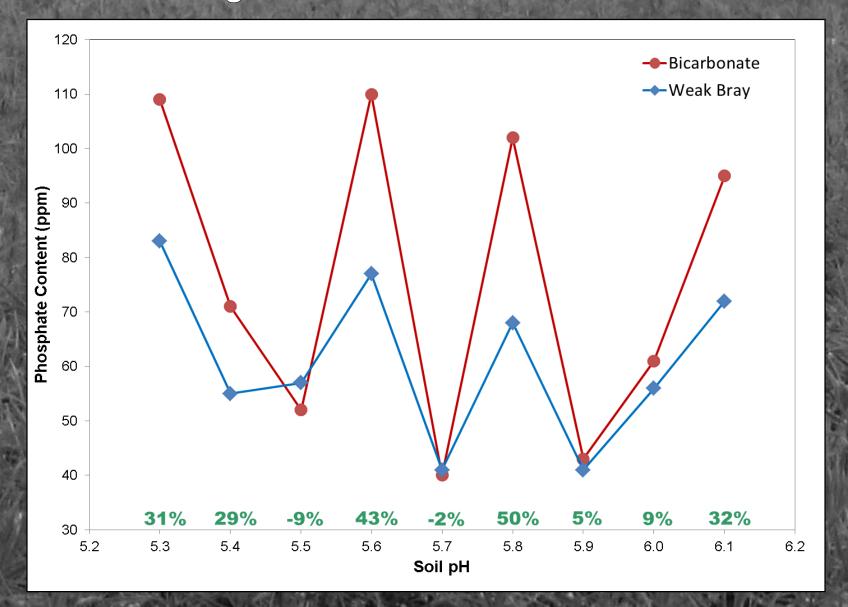
Results last year from orchard with fairly low pH. Standard lab knew to use acetate extraction.

P = 13 ppm

Ca = 100 ppm

Mg = 20 ppm

Same orchard this year.


New lab assumed that
pH was very high so used
bicarbonate extraction:

P = 95 ppm

Ca = 2,000 ppm

Mg = 300 ppm

The chemist laughed when asked for conversion factors...

Lab Data vs. Lab <u>Recommendations</u>: For What? Hemlock Seed? Douglas-fir Needle Color? Barley Yields?

PLANT ANALYSIS REPORT

USAg ANALYTICAL SERVICES, INC.

Lab No.

1320 E. Spokane Street

Phone: (509) 547-3838

547-8645

Page: 1 of 2

A & L WESTERN AGRICULTURAL LABORATORIES

10220 SW NIMBUS AVE BIdg K-9 | PORTLAND OREGON 97223 | (503) 968-9225 | FAX (503) 598-7702

REPORT NUMBER:

CLIENT NO:

SEND TO:

GROWER:

SUBMITTED BY:

Sampled By:

Date Sampled:

Date Received:

Date Reported:

DATE OF REPORT:

SOIL ANALYSIS REPORT

PAGE: 1

П			Organic Matter		Phos			Magnesium	Calcium	Sodium	p	Н	Hydrogen Cation		PERCENT				
1	SAMPLE	LAB	Organic	matter	P1	NaHCO ₃ -P	К	и	Ca	Na				Exchange	CATION SATURATION (COMPUTED)				
	ID	NUMBER	* % Rating	ENR Ibs/A	(Weak Bray)	lsenMethod) **** * ppm	ppm	Mg *** * ppm	ppm	rva *** * ppm	Soil pH	Buffer Index	H meq/100g	Capacity C.E.C. meq/100g	K %	Mg %	Ca %	H %	Na %
			3.8H	107	102VH	68**	239M	257M	1623L	47L	5.8	6.1	2.6	13.6	4.5	15.5	59.5	19.0	1.5
			3.2M	95	61VH	56**	248M	390M	2025L	37VL	5.8	6.5	3.3	17.4	3.6	18.4	58.0	19.0	0.9
			2.3M	76	52VH	57**	179M	304M	1665L	18VL	5.4	6.5	4.5	15.9	2.9	15.7	52.4	28.5	0.5
	i		2.0L	71	110VH	77**	265H	203M	1208L	23VL	5.6	6.6	2.6	11.1	6.1	15.0	54.4	23.5	0.9
			2.5M	80	95VH	72VH	303H	314M	1816M	31VL	6.4	6.6	1.2	13.8	5.6	18.7	65.7	9.0	1.0

0.41101.5	Nitrogen	ogen Sulfur		Sulfur	Sulfur	Sulfur	Sulfur	Zinc	Manganese	Iron	Copper	Boron	Excess	Soluble	Chloride			PARTIC	LE SIZE ANALYSIS
SAMPLE NUMBER	NO ₃ -N	SO ₄ -S	Zn	Mn	Fe	Cu	В	Lime	Salts	CI	SAND	SILT	CLAY	SOIL TEXTURE					
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Rating	mmhos/cm	ppm	%	%	%	SOIL TEXTORE					
	5L	6L	2.9M	3M	163VH	1.0M	0.3VL	L	0.3L										
	11L	7L	1.6M	ЗМ	165VH	1.5H	0.4L	L	0.3L										
	7L	6L	0.8L	4M	144VH	0.9M	0.3VL	L	0.2VL										
	6L	3VL	1.4M	ЗМ	164VH	0.6L	0.3VL	L	0.2VL										
	17M	6L	1.1M	2L	135VH	0.8L	0.4L	L	0.4L										

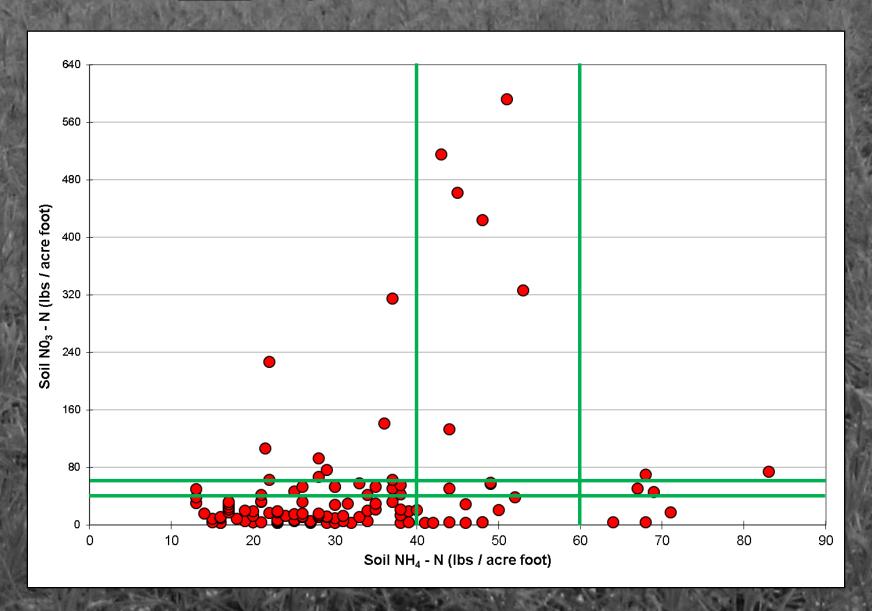
CODE TO RATING: VERY LOW (VL), LOW (L), MEDIUM (M), HIGH (H), AND VERY HIGH (VH).

** ENR - ESTIMATED NITROGEN RELEASE

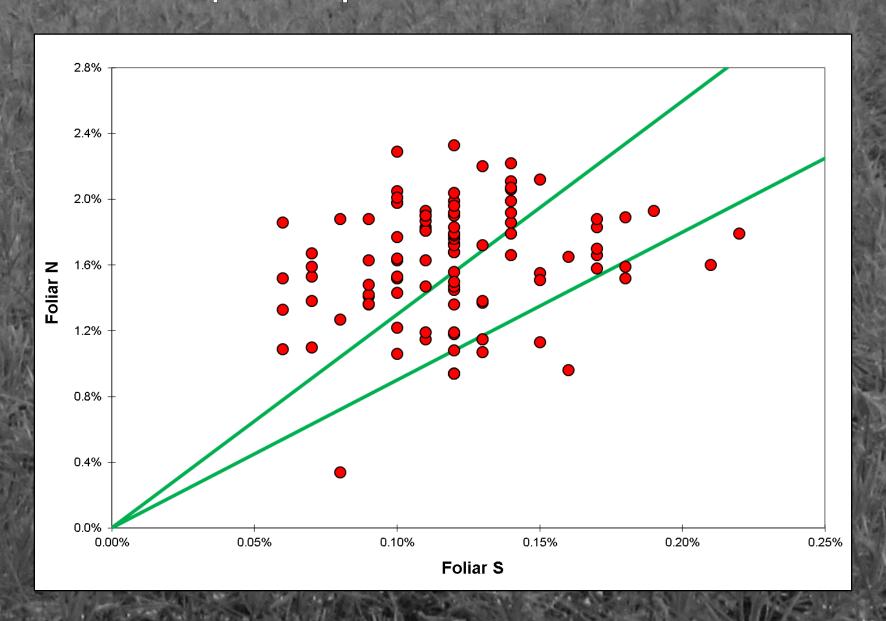
**** MULTIPLY THE RESULTS IN ppm BY 4.6 TO CONVERT TO LBS. PER ACRE P₂O₅
***** MULTIPLY THE RESULTS IN ppm BY 2.4 TO CONVERT TO LBS. PER ACRE K₂O

MOST SOILS WEIGH TWO (2) MILLION POUNDS (DRY WEIGHT) FOR AN ACRE OF SOIL 6-2/3 INCHES DEE

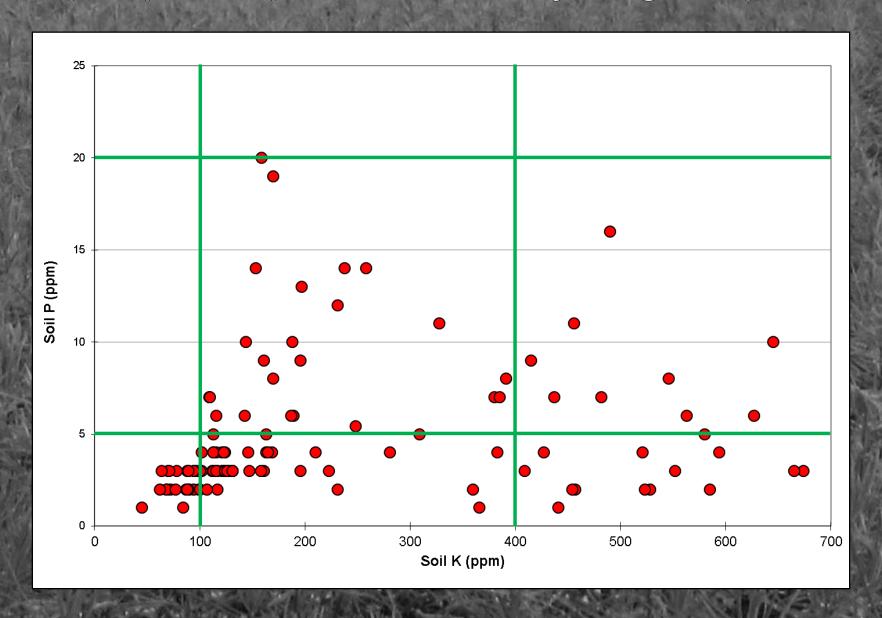
This report applies only to the sample(s) tested. Samples are retained a maximum of thirty days after testing.


Darry J. Peebles

Darcy L. Peebles, CCA
A & L WESTERN LABORATORIES, INC.


) m	Zn ppm	Mn ppm	Fe ppm	Cu ppm		
.2	35	143	79	7		
.7	41	414	138	7		
.6	46	238	69	7		
.2	53	343	102	8		
.9	50	291	86	8		
.0	47	280	110	6		
.3	57	368	86	8		
.7	45	186	85	7		
.2	47	395	124	8		

^{***} MULTIPLY THE RESULTS IN ppm BY 2 TO CONVERT TO LBS. PER ACRE OF THE ELEMENTAL FORM


What are our ideal targets for various forms of soil nitrogen?

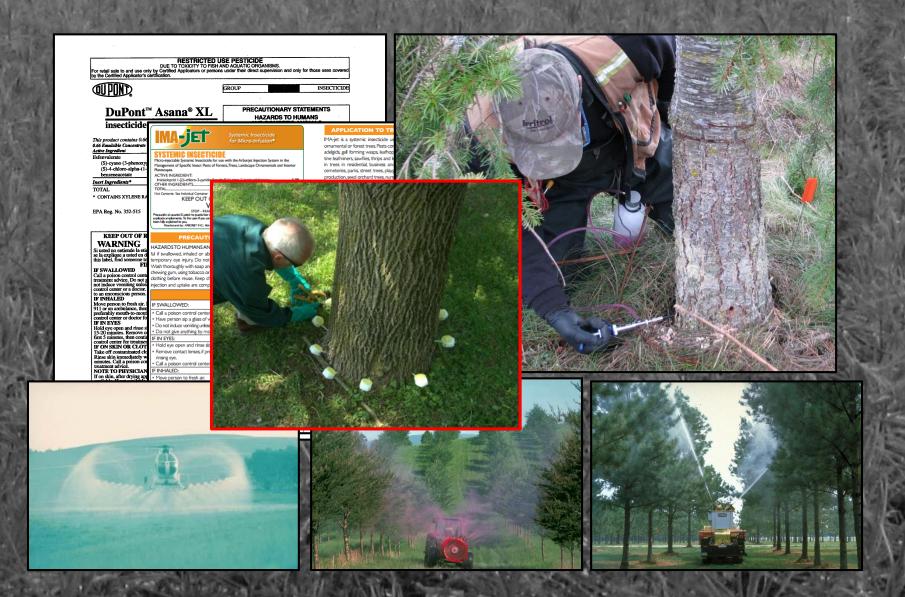
Adequate sulphur if foliar N:S is > 13:1?

Ideal phosphate & potash levels? Any fertigation potential?

Questions to address (both now and later)

- Different needs by species and/or age?
- Any interactions with stimulation treatments?
- Need to increase pH? Watch base saturation?
- What practices are used with loblolly, radiata, etc.?
- What's the ideal time to sample and to fertilize?
- 50 years of breeding/testing yet few orchard studies!
- How do we <u>optimize</u> orchard production?
- Alternatives to waiting for grad students?

Sucking Bugs? Wasps? Chewing Moth Larvae? Small pests that (sometimes) cause massive damage.



Insecticides and their Application

2012 Injection Trials with Alex Mangini

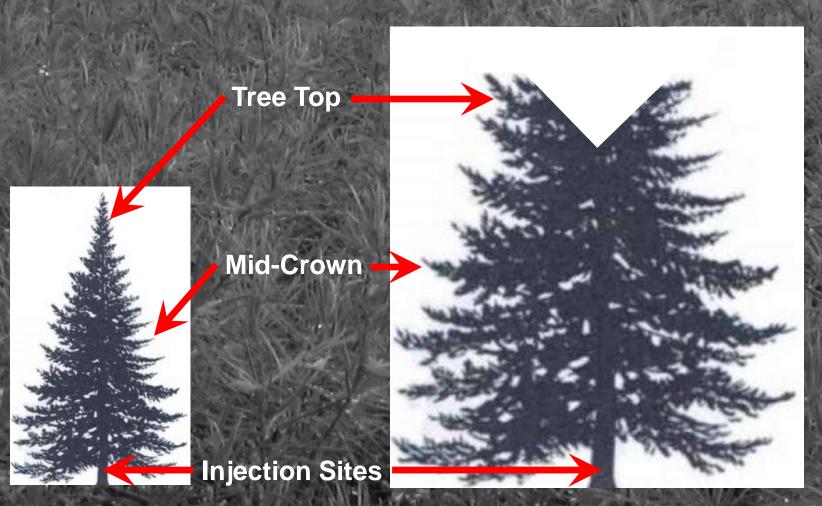
Big Trees, 4 Orchard, 2 Chemicals, Plugged or Not

2012 Injection Trials with Alex Mangini Big Trees, 4 Orchards, 2 Chemicals, Plugged or Not

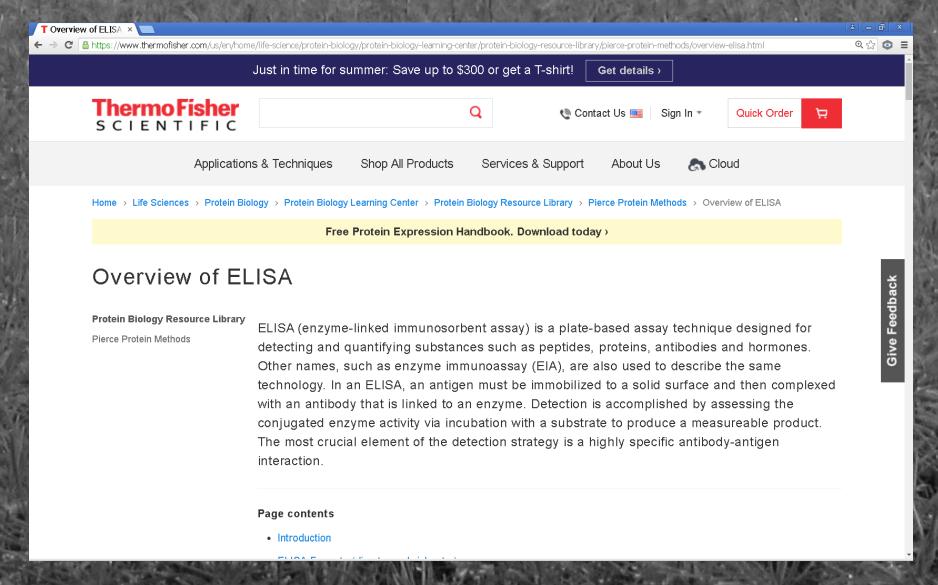
reatments	% Healthy Cones	% CGM	Cones	% CW	Cones	
arameter	t Value Pr > t	t Value	Pr > t	t Value	Pr > t	
	HEIGHT and TREATMENT					200 K
majet: mid vs top	0.68 0.4988	-0.50	0.6223	-1.80	0.0795	100
reeage: mid vs top	2 75 0 0000	2 00	0.0063	-2 76	ก กกรร	(2)
najet vs Treeage avr over PROC GLM –	ANOVA and CONTRASTS for	HEIGHT an	d TREATIV	IENT – Orc	hard A	
majet avr over ht vs Contro Parameter		Esti	imate S	tandard	Error	Pr > t
reeage avr over ht vs Cont						
Dependent	Variable - % CGM by Rai	met				
majet: plug vs dowel, mid Imajet: mid	vs top	-0.1613	37807	0.9512	21318	0.8661
reeage: plug vs dowel, mic						
Treeage: m najet: avr r PROC GLM - ANOVA and Co		-1.1500	9519	0.9219	0798	0.2193
reeage: avr	UNITASIS IUI METHODS – UI	CHAIU A			- Cr - L	15
Parameter majet vs Tra			E	stimate	Standa	ard Erro
najet avr o Dependent Variable – %	CGM by Ramet					
reeage avr Imajet: plug vs dowel, n			2 19	475624	26	291835
59/45/201						
Treeage: plug vs dowel,	mid		-1.67	926230	2.6	291835
Imajet vs Treeage avr ov	ver methods except open		-2.59	057000	1.5	885999
			1 20	790617	2.1	972373
Imajet avr over methods	except open vs Control		-1.30	790017	2.1	312313

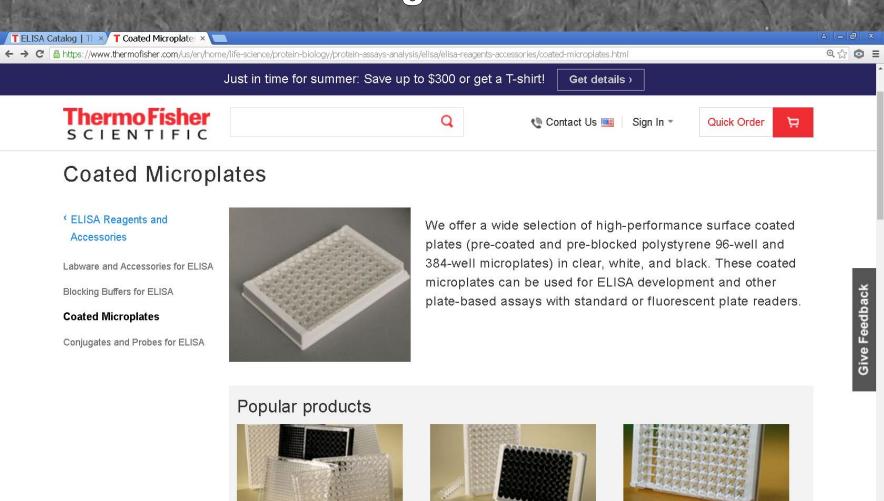
Bottom Line: Was unimpressive on those huge trees. No need to plug holes. <u>Some relationship with height</u>. Differences between orchards, chemicals and insects?

2015 / 2016 Injection Trials with Alex Mangini & Brian Strom:


Assess Imidacloprid in Younger and/or Shorter Orchards

2015 / 2016 Injection Trials with Alex Mangini & Brian Strom


Assess Imidacloprid Potential <u>Vegetatively</u> (independent of infestation levels)


2015 / 2016 Injection Trials with Alex Mangini & Brian Strom

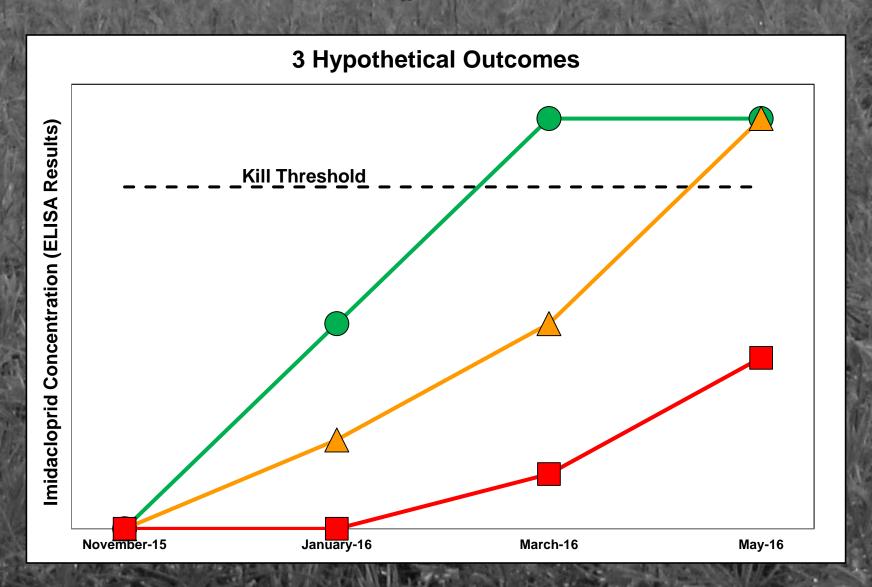
Sar	mpling Dates:	November 2015	January 2016	March 2016	May 2016		
: Tops	Foliage	6 "Old" Clones @ 3 Ramets Each 7 "Young" Clones @ 3 Ramets Each	6 "Old" Clones @ 3 Ramets Each 7 "Young" Clones @ 3 Ramets Each	6 "Old" Clones @ 3 Ramets Each 7 "Young" Clones @ 3 Ramets Each	6 "Old" Clones @ 3 Ramets Each 7 "Young" Clones @ 3 Ramets Each		
Tree	Females	6 "Old" Clones @ 3 Ramets Each 7 "Young" Clones @ 3 Ramets Each	(no samples)	(no samples)	6 "Old" Clones @ 3 Ramets Each 7 "Young" Clones @ 3 Ramets Each		
Mid-Crown	Foliage	6 "Old" Clones @ 3 Ramets Each 7 "Young" Clones @ 3 Ramets Each	6 "Old" Clones @ 3 Ramets Each 7 "Young" Clones @ 3 Ramets Each	6 "Old" Clones @ 3 Ramets Each 7 "Young" Clones @ 3 Ramets Each	136 "Old" Clones @ 3 Ramets Each 7 "Young" Clones @ 3 Ramets Each		
Mid-	Females	6 "Old" Clones @ 3 Ramets Each 7 "Young" Clones @ 3 Ramets Each	(no samples)	(no samples)	6 "Old" Clones @ 3 Ramets Each 7 "Young" Clones @ 3 Ramets Each		
	Total Samples:	156	78	78	156		

2015 / 2016 Injection Trials with Alex Mangini & Brian Strom

2015 / 2016 Injection Trials with Alex Mangini & Brian Strom

NeutrAvidin® Coated Plates

-Standard Capacity


NeutrAvidin® Coated Plates

-High Capacity

NeutrAvidin® Coated Plates

-High Sensitivity

2015 / 2016 Injection Trials with Alex Mangini & Brian Strom

Questions to Address (both now and later)

- Were <u>any</u> of the imidacloprid concentrations high enough?
- How did the concentrations vary over time?
- Differences by tree size?
- Differences among clones?
- Differences among ramets within clones?
- Did any levels degrade over time?
- How wide might the treatment window be?
- How are the logistics compared to aerial application(s)?
- What are the costs and labor requirements?
- What insects are/aren't controlled?
- Are there options for treating other tree and insect species?
- Who will address such questions? How soon?

93,500 Internet Hits for "Conifer Stimulation"

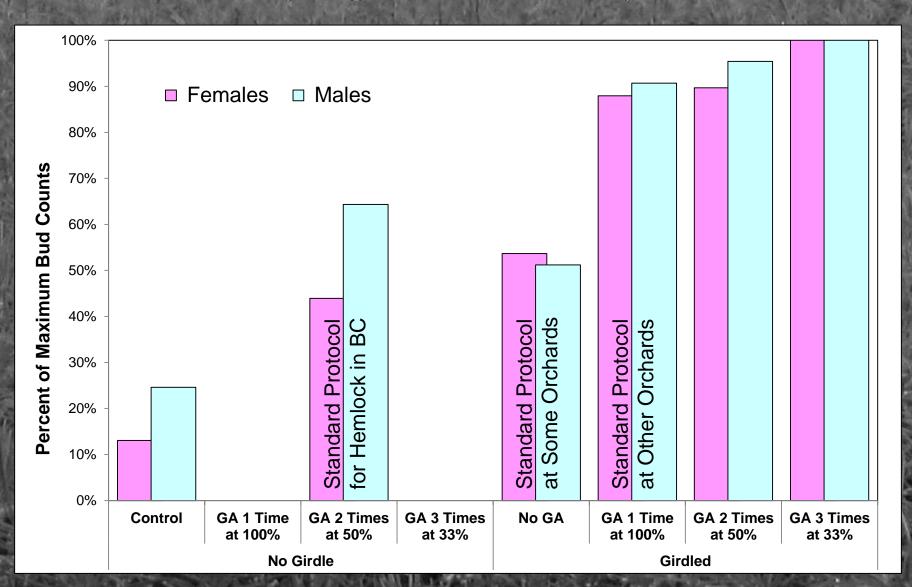
Gibberellins? Calcium Nitrate? Girdling? Root Pruning? All Four?

Gibberellins: Phytotoxicity can be touchy yet the math is easy.

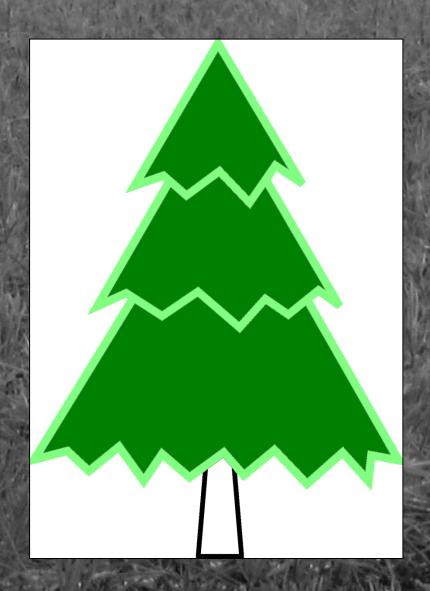
Tree Size			ml ProCone / Tree		Holes to Drill (6" Apart)	ml ProCone / Hole		GA Cost/Tree (\$320/pint)	
DBH (inches)	Circumference (in)	Basal Area (cm²)	Low Dosage (0.018 ml/cm²)	High Dosage (0.036 ml/cm²)	Holes (6" A	Low Dosage	High Dosage	Low Dosage	High Dosage
2	6.3	20	0.4	0.7	1	0.4	0.7	\$0.25	\$0.49
3	9.4	46	0.8	1.6	2	0.4	8.0	\$0.56	\$1.11
4	12.6	81	1.5	2.9	2	0.7	1.5	\$0.99	\$1.97
5	15.7	127	2.3	4.6	3	0.8	1.5	\$1.54	\$3.09
6	18.8	182	3.3	6.6	3	1.1	2.2	\$2.22	\$4.44
7	22.0	248	4.5	8.9	4	1.1	2.2	\$3.02	\$6.05
8	25.1	324	5.8	11.7	4	1.5	2.9	\$3.95	\$7.90
9	28.3	410	7.4	14.8	5	1.5	3.0	\$5.00	\$10.00
10	31.4	507	9.1	18.2	5	1.8	3.6	\$6.17	\$12.34
11	34.6	613	11.0	22.1	6	1.8	3.7	\$7.47	\$14.93
12	37.7	730	13.1	26.3	6	2.2	4.4	\$8.89	\$17.77
13	40.8	856	15.4	30.8	7	2.2	4.4	\$10.43	\$20.86
14	44.0	993	17.9	35.8	7	2.6	5.1	\$12.09	\$24.19
15	47.1	1,140	20.5	41.0	8	2.6	5.1	\$13.88	\$27.77
16	50.3	1,297	23.3	46.7	8	2.9	5.8	\$15.80	\$31.59
17	53.4	1,464	26.4	52.7	9	2.9	5.9	\$17.83	\$35.67
18	56.5	1,642	29.6	59.1	9	3.3	6.6	\$19.99	\$39.98

An Excerpt from the ProCone Label:

APPLICATION TIMING


...Treatments during shoot elongation tend to <u>promote</u> <u>pollen cones</u> and treatments <u>after shoot elongation</u> tend to <u>promote seed cones</u>. For injections into branches or into the main stem, single applications are effective. For Picea species, ProCone should be injected when new shoots are 70 to 90% elongated. For Pinus, a single early injection near the end of shoot elongation may promote pollen cones; later injections may be required for seed cones. More than one injection date may be necessary...

May 2016 Literature Review by Candace Cahill:


...generally not much known about timing of GA injections favoring either male or female production, except possibly for western hemlock...

Paper by BC Ministry of Forests in 1988

(Douglas-fir at Nanaimo)

Is Treatment Timing Truly Critical?

Inject within days
of vegetative budburst
to differentiate buds
months later on the
very tips of those
eventual branches?

Actually need to girdle weeks earlier during pollen bud swell?

Green cells could be used to contrast operational logistics vs. flowering responses

		Girdling Date					
		None At Pollen Bud Swell		At Vegetative Budburst	Determined by Logistics		
GA Injection Date	None	(control)		S.O.P. at some sites	S.O.P at some sites		
	At Pollen Bud Swell						
	At Vegetative Budburst	S.O.P. at some sites	S.O.P at some sites				
	Determined by Logistics				(simultaneous treatments)		

Example of a simple pilot study to assess the effects of injection timing. (9 months from inception to completion)

		Vegetative Buds		Branch Elongation				
		Swollen	Burst	1"	2"	4"	8"	
Four Clones 4 Years from Grafting	Clone A	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	
	Clone B	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	
	Clone C	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	
	Clone D	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	
8 fting	Clone E	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	
ones n Gra	Clone F	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	
Four Clones 8 Years from Grafting	Clone G	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	
Fe	Clone H	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	
12 fting	Clone I	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	
Four Clones 12 Years from Grafting	Clone J	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	
	Clone K	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	
	Clone L	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	3 ramets	

Questions to Address (both now and later)

- Should we confirm/refine the earlier findings about timing and rates? The label recommendations are generic and somewhat counter-intuitive.
- Can we in fact skew the male/female bud ratios? Can we generate less pollen from low-ranked clones and keep the overall pollen cloud adequately dense?
- Urea (46-0-0) and ammonium sulphate (21-0-0) are NH₄⁺.
 Calcium nitrate (15.5-0-0) is NO₃⁻. How does this affect male and females bud initiation?
- Fertilize at with Ca(NO₃)₂ at 300# N/Acre vs. 200#/Acre? A diminishing return doesn't imply poor returns. What are the actual costs / benefits?
- Are there options for treating other species?
- Who will address these/other questions? How soon?