

USING eDNA ANALYSIS TO DETERMINE THE PRESENCE OF AQUATIC SPECIES

Matthew B. Laramie, David S. Pilliod USGS Forest and Rangeland Ecosystem Science Center Boise, Idaho

Western Forestry and Conservation Association 5th Field Technologies for Data Collection in Forestry, Fisheries, and Natural Resources 19 November 2015

U.S. Department of the Interior U.S. Geological Survey

Outline

- Overview
- Discerning salmon redds using eDNA
- eDNA as an index of fish abundance
- Protocols
- Resources

Aquatic survey methods

Photo courtesy ADF&G

Aquatic survey methods

Snorkeling

Aquatic survey methods

Electrofishing

Snorkeling

The Basic Approach

[eDNA] = production - degradation

Example: fish

<u>eDNA production</u> fish density fish health reproductive status metabolism

eDNA degradation UVB exposure water temperature adsorption pH

Influence

Environment water volume water temperature habitat

How long does DNA persist in water?

Dejean et al. (2011) PLoS One 6: e23398.

Where should samples be collected?

Chinook eDNA concentration (ng/L)

Laramie et al. (2015) doi:10.1016/j.biocon.2014.11.025.

Integrating into Existing Monitoring Programs

*Highly sensitive eDNA methods could be useful alternative to investing high effort

Integrating into Existing Monitoring Programs

*Highly sensitive eDNA methods could be useful alternative to investing high effort

Monitoring Salmon Populations

Photo used with permission; © Brian Miller (CCT/OBMEP)

Monitoring Salmon Populations

fcrw_wordpress.com

Chinook Redds

Cedar River, Washington Department of Fish and Wildlife

Habitat & timing used to differentiate redds where species co-occur

1. How much salmon DNA is in the environment (water column and gravel) during spawning?

2. Can we differentiate coho redds from chinook redds using eDNA analysis?

Burke Strobel, Portland Water Bureau

- 1. 15 mL water samples (triplicate)
- 2. Field preserved with 1.5 mL sodium acetate and 33 mL ethanol
- 3. DNA extracted via precipitation method (Ficetola et al. 2008)
- 4. qPCR analysis

How much Coho DNA is at a Coho Redd?

Can unknown redds be assigned?

Can unknown redds be assigned?

All streams combined

eDNA concentration as an index of fish abundance?

Omak Creek

- Mid-size perennial stream
- ~5 m wetted width
- 10 150cfs
- USGS Gage 12445900

Does [eDNA] reflect relative fish abundance? Does it matter where samples are collected (cross-section)?

Miller, B.F., J.L. Miller, S.T. Schaller, and J.A. Arterburn. 2013. Okanogan Basin Monitoring and Evaluation Program, 2012 Annual Report. Colville Confederated Tribes Fish and Wildlife Department, Nespelem, WA. Project No. 2003-022-00.

Electrofish mark-recap RBT abundance

Miller, B.F., J.L. Miller, S.T. Schaller, and J.A. Arterburn. 2013. Okanogan Basin Monitoring and Evaluation Program, 2012 Annual Report. Colville Confederated Tribes Fish and Wildlife Department, Nespelem, WA. Project No. 2003-022-00.

Does [eDNA] reflect fish abundance?

eDNA as an index of relative abundance

≥USGS

eDNA as an index of relative abundance

eDNA within the stream cross-section

eDNA Sampling Protocols

Prepared in cooperation with Washington State University

Environmental DNA Sampling Protocol—Filtering Water to Capture DNA from Aquatic Organisms

Chapter 13 of Section A, Biological Science Book 2, Collection of Environmental Data

http://pubs.usgs.gov/tm/ 02/a13/tm2a13.pdf

Techniques and Methods 2–A13

U.S. Department of the Interior U.S. Geological Sarvey

Selecting the best protocol

Sampling Workflow Diagram

Step 1: Choose the best protocol, depending on your conditions

Protocol #1: Hand pump

1-L

Protocol #2: Cordless driver

11

Protocol #3: 120v pump

A

6

Sample collection options

Comparing sample collection options

Pilliod et al. (2013). Canadian Journal Fisheries and Aquatic Sciences.

Filters stored in ethanol at room temp

eDNA Resources

Prepared in cooperation with Washington State University

Environmental DNA Sampling Protocol—Filtering Water to Capture DNA from Aquatic Organisms

Chapter 13 of Section A, Biological Science Book 2, Collection of Environmental Data

SAMPLING PROTOCOLS http://pubs.usgs.gov/tm/02 /a13/tm2a13.pdf

USGS Desires (Texa Offungling world

Application of Environmental DNA for Inventory and Monitoring of Aquatic Species

This fact sheet was created to help biologists and resource managers understand emerging methods for detecting environmental DNA and their potential application for inventorying and monitoring aquatic species. It is a synthesis of published information. USGS FACT SHEET http://pubs.usgs.gov/fs/2 012/3146/pdf/fs2012-3146.pdf

eDNA Resources

eDNA.fisheries.org

Photo courtesy of Jeffrey Williams (AKDFG)

Acknowledgements

- Portland Water Bureau (PWB) Burke Strobel
- Colville Confederated Tribes (CCT)
 Okanogan Basin Monitoring & Evaluation Program (OBMEP)
 Chief Joseph Hatchery Science Program (CJHP)
- Washington State University (WSU)
 Caren Goldberg & Kath Strickler

What does an eDNA sample represent?

≊USGS

Pilliod et al. (2013) Canadian Journal of Fisheries and Aquatic Sciences 70:1123-1130.

Table 3. Analysis of Variance (ANOVA) table for differences in O. kisutch eDNA among sample types.						
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Sample type	6	1847497	307916	8.1409	1.997e-06 ***	
Residuals	59	2231569	37823			
Signif. codes:	0 '***'	0.001 '**'	0.01 '*'	0.05 '.'	0.1 ' '	1
Response: Site replicate mean [eDNA] (pg/15 mL)						

Table 4. Tukey multiple comparisons of means w/ 95% family-wise confidence level for O. tshawytscha eDNA among sample types.

Sample type	diff	lwr	upr	p adj
O. tshawytscha redd - gravel	266.7449	120.5793	412.91037	0.0000133
O. tshawytscha redd - O. kisutch redd	291.8099	145.6444	437.97538	0.0000018
Water - O. tshawytscha redd	-269.2079	-387.1876	-151.22823	0.0000001
Fit: aov(formula = Site replicate mean [eDNA] (pg/15mL)~ Sample type, data = O, tshawytscha eDNA)				

How many replicates are necessary?

Possible	detection outcomes at a site	% of sites	# replicates (-)	# replicates total
	000	41%		
	100	3%	6	9
	110	7%	6	18
	111	49%	0	135
	Total	100%	12	162

Laramie, M.B. (2013) http://scholarworks.boisestate.edu/td/780

Assessing detection probability and error

Possible detection outcomes

at a site	% of sites	# replicates (-)	# replicates total
000	41%		
100	3%	6	9
110	7%	6	18
111	49%	0	135
Total	100%	12	162
	(12/162 = 7%) false negatives		

Laramie, M.B. (2013) http://scholarworks.boisestate.edu/td/780

Contamination Prevention

Contamination can result from various factors at every step in the sample collection process. Be vigilant. Before initiating eDNA sample collection, the following field and laboratory practices should be reviewed to avoid contamination of samples and cross-contamination among samples:

 Wear clean, non-powdered, single-use gloves when collecting samples and removing filters. Do not let gloves contact contaminated surfaces, such as any equipment that was not sterilized between sites, prior to handling the filter.

When do we use eDNA?

Figure courtesy of Dr. Caren Goldberg, WSU

How much Coho DNA is in environment?

How much Coho DNA is at a Coho Redd?

